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A method of resummation of infinite series of perturbation theory diagrams is applied for studying the
properties of random band matrices. The topological classification of Feynman diagrams, which was actively
used in recent years for matrix model regularization of two-dimensional gravity, turns out to be very useful for
band matrices. The critical behavior at the edge of the spectrum and the asymptotics of the energy-level
correlation function are considered. This correlation function, together with the hypothesis about universality
of spectral correlations, allows one to estimate easily the localization length for eigenvectors. A smoothed
two-point correlation function of the local density of stajgE,,i)p(E,,j)., as well as the energy-level
correlation for finite-size band matrices, is also foundd-Alimensional generalization of band matrix lattice
Hamiltonians with long-range random hopping is considered as {&1063-651X97)01905-3

PACS numbd(ps): 05.45+b, 72.15.Rn

I. INTRODUCTION
F. 2 n°F(n)
Random band matrices were introduced many years ago b2=F—2= E— 2
by Wigner[1] as a model Hamiltonian for complicated quan- 0 2 F(n)
tum systems. In the past few years statistical properties of
random band matrices have again become the subject of in-

tensive analytical and numerical investigatigh-4] due to VZ=Fy=2, F(n).
their application to condensed-matter physics and the statis-
tics of the spectrum of chaotic systems. For practical computations we will sometimes usef the

Up to now all the analytical results for these quasi-oneform
dimensional systemgor review se€2]) were obtained by
mapping them onto a super-symmeticmodel [5]. How- - % (i—§)?
ever, in this paper we would like to develop another method Fi=D= mex T T op?
for calculation with random banded matrix ensembles.
Roughly speaking, our method consists of the summation oAs will be shown below, the results essentially do not de-
an infinite series of perturbation theory diagrams. Diagrampend on the details of the shape of the functitin—j). We
matic methods were used many years g@@] for the inves-  need onlyF(i—j) to be sufficiently smooth so that after
tigation of Gaussian ensembles W< N matrices, but later averaging Eq(1) all discrete sums may be replaced by inte-
this approach was almost forgotten for years. Our aim in thigrals up to negligible corrections exp(—b). In doing so we
paper will be to show how this “old” method may lead siill are able to consider the corrections of any finite order in
rather easily to new results for band matrices. 1/b. Moreover, we argue below that even the smoothness of
Let us consider a Gaussian ensemble of random band mg- does not seem to be necessary for most interesting appli-
trices. Due to the Wick theorem such ensembles may bgations[see Eqgs(15) and(16) and the discussion below; it

. 3

completely defined by the second moment will also be shown why Eq(3) is the most natural choice of
F].
By a simple d-dimensional extension of band matrices
HijHin=F( =) (6jk6in+ O 6jn i) - (1) one obtains the Hamiltonian for particle hopping on a

d-dimensional lattice with a random nonlocal interaction.
This lattice model may be described by the same formulas

The functionF (i —j)=F(]i—j|) vanishes very rapidly out- (1)—(3) with simple replacement of all integer indices by the
side the bandat |i —j|>b>1). The paramete® takes val- integerd vectors and trivial redefinition of:

ues 0 or 1. If® =0, one is dealing with Hermitian matrices o

of general form{a Gaussian unitary ensembil@UE)], while . e v? (i—])?

©®=1 corresponds to the real symmetric matrif@<Gauss- =i Fi—-])= b(2m) 2R T ppzE | )

ian orthogonal ensembléGOE)]. [However, the notations

GUE and GOE for our ensembles are mainly traditionalContrary to band matrices, properties of this model seem to
since unitary(orthogona) invariance is broken explicitly for be completely unknown. Thibe>1 in Eq. (4) is effectively
banded matriceklt is convenient to define the width of the the number of “neighbors” connected to each lattice site.
bandb and the typical strength of the interactidhthrough ~ The band matricesl) may now be associated with the ran-
moments of the functiofr: dom Hamiltonian for a one-dimensional lattice.

1063-651X/97/58)/641914)/$10.00 55 6419 © 1997 The American Physical Society



6420 P. G. SILVESTROV 55

The “physical quantities” that we would like to consider ~ The statistics of band matrices with parameters of the
are connected with the Green'’s function and the local densithand slowly varying along the diagonal was considered in
of states [14]. The behavior of the edge of the spectrum for this ex-

tension of the mode(l) showed some surprising similarities
1 with the edge properties of matrix ensembles considered for

, p(E,)=—ImG;;(E~i0). (5  the 2D gravity. The topological classification of the diagrams
i that we will explore below was also briefly discussedd].

] ) o ] The organization of this article is as follows. The general
There is no summation overin G;; in formula(s). More description of the diagrammatic technique is given in Sec. Il.
specifically, we would like to consider the averaged den3|tyBy a comparison with th&lx N case a diagrammatic proof

of statesp(E) and the correlation of densities for different ¢ the semicircular density of states is found. We also de-

but very close energiegand even for different positions  yelop a partial summation of an infinite subseries of topo-
andj). _ . logically trivial tree-type diagrams. In Sec. lll the ideology
It is also constructive to compare our “?SU”S W'_th thosef the double scaling limit is used to study the edge of the
for Fhe ensembles of usublX N random matrices, which are spectrum for random band matrices. The edge of the spec-
defined by the second moment trum for lattice model4) is considered in Sec. IV. Surpris-
ingly, the critical behavior at the edge for lattices with ran-
dom hopping coincides with the critical behavior of the
string-theory inspired model considered[ib5]. In Sec. V
the two-point correlation functiorp(Eq)p(E,). is calcu-
This Hamiltonian may be considered as the 0 reduction lated. More precisely, we found the so-called smoothed cor-
of the lattice model(4). Historically three main approaches relation function in the largé-limit and the first~1/b cor-
were applied for studying the statistics of the NIk N ma- ~ rection to it. Moreover, together with the hypothesis about
trices. The description of these approaches may be foundhe universality of spectrum fluctuatiof], this correlation
e.g., in Refs[7-9]. The first one is the summation of an function allows one to find the correct estimate of the local-
infinite power series iV/E [7] The other two methods are ization Iength for the eigenfunctions of band matrix. This
the replica trick{8] and the supersymmetry methf@. universality holds also for the-1/b correction to the corre-
The success of both replicas and supersymmetry is esselgtion function, even though the 1/b correction itself turns
tially based on the use of the Hubbard-Stratonovich transforout to be the subject of strong cancellations. Finally, in Sec.
mation. ForNX N matrices this transformation reduces the VI some quantities that have no analog for usNai N ma-
problem to an almost trivial calculation of a few-dimensionaltrices are considered. These are the correlation function of
integral. On the other hand, for band matrices, even after ththe local density stateg(E,i)p(E,,j). and the usual
Hubbard-Stratonovich transformation, one still is faced withdensity-density correlation function for the banded matrices
a o model on the one-dimensional lattice. Thus it seemf finite sizeN.
quite probable that neither replicas nor super-symmetry will
lead to considerable progress in the lattice madgl Il. DIAGRAMMATIC TECHNIQUE
The exact solution of two-dimensiondRD) quantum . ] ]
gravity [10] stimulated the explosion of interest in matrix It follows immediately from Eq.(1) that only diagonal
models. In this application of random matrices the dis-terms survive in the averaged Green’s function
cretized random surfaces appear as Feynman graphs in the —
perturbative expansion of the matrix integral. However, tech- Gij=G(E)di;- @)
nically, the famous double scaling solution of 2D gravity has
nothing to do with the summation of graphs. For ensemble

1
Gi,j(E):(ﬁ

o VZ - 2
F(l_])EW’ HijHmn:W(‘sjm‘sin"'@‘sjn‘Sim)- (6)

et us expands(E) in a formal series

invariant under orthogonal transformations it is useful to = n
work with N eigenvalues instead of al? matrix elements. G= Etr 1 _ i tr(ﬂ) )
Unfortunately, for band matrices, or the lattice hopping N E-H NE= \E

Hamiltonian, we could not find such a simple solution, which
is not based on the diagrammatic expansion. Neverthelesblow all we need is to use the Wick theorem and the second
for models(1) and (4) the topological classification of dia- moment(1) to calculate all the average values of the trace of
grams, which arose in 2D gravitiand originally in QCD  the product oH matrices. In the standard Feynman diagram
[11]), simplifies drastically the summation of the series. technique eachi” corresponds tm-leg vertices and the av-
This experience of dealing with the matrix integrals for eraging in Eq(8) reduces to counting the number of possible
2D gravity was later used for solving the problems typicalways of contracting these legs to each other. However, like
for quantum chaos. Ifil2] a method of calculation of corr- in 2D gravity, it is more convenient to draw the dual Feyn-
elators of the Green’'s functions for ensembles of largenan graphs. For dual diagrams eddl) corresponds to a
NXN matrices was developed. An approach based on theegment with numbersandj at the ends, whiled" corre-
summation of perturbation theory series for various ensponds to ann-vertex polygon with matrix indices
sembles of random matrices was also used in the series of,i,, ... i, assigned to the vertic¢see Fig. 1a)]. It is also
papers of Brezin and Zesee, e.g.[13] and later papers by useful to draw the arrow on each segment showing the di-
the same authoysthough their diagrammatic technique dif- rection from the first to the second index. Within this lan-
fers from that used in the present paper. guage, the Wick contractions in E¢B) correspond to the
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Even more troublesome is the calculation of correlation
functions. In this case one has to consider the Green'’s func-
tions close to the borders of the clE£E,=i0,|E|<2V)
and very far from the domain of convergence of the series
(8). The price for such an unreliable procedure will be the
severe cancellations of different contributions to thé/b
corrections to the correlation functideee Sec. Y.

As we have taken into account exactly in E4O) all
spherical contributions, the-1/b corrections naturally turn
out to be determined by the diagrams of the more compli-
cated topology. As we have seen beffEgs.(9) and(10)],

a b the sum over spherical graphs for fidix N matrices and for
band matrices coincides up to the trivial replacenént b
because the summation over each matrix index in the tree

FIG. 1. (@ A plaquette andb) a sphere glued from such a diagram of the kind of Fig. (b) is independent and results
plaquette. exactly in the trivial factorv2. This direct correspondence

) . ] ) does not hold for diagrams of more complicated topology.
gluing of pairs of segments. Our aim now is to calculate thejowever, each sum over the matrix index contains effec-
number of ways in which the edges of the polygon may bejyely ~p items and their magnitude corresponds to that for
glued into some closed surface. NXN matrices up to the substitution—N. Thus all the

For Hermitian matrice§®=0 in Eq. (1)] the segments psiness with the classification of the diagrams in the powers
should be glued in the opposite direction, thus forming theyf the parameter B(1/N), which was so productive for the
oriented surface. For symmetric matricés=t 1) the nonori- || matrices, still holds for the band matrices as well. In
ented surfaces are also alloweslg., the Maius bandl. particular for the Hermitian band matrice® =0 in Eq.(1)],

An example of the simplest surface of spherical topologyone may use the well-known Euler theorem to show that the
is shown in Fig. 1b). It is easy to verify that just the spheri- 5 ections to Eq(10) may be only of the kind~(1/b?)",
cal surfaces dominate i@ at largeb. Only in this case does yith n being the number of handles.
the sum oven matrix indices forH" give the factoNb® and Up to now we have associated each Feynman diagram
thus[see Eqs(1) and(2)] with some surface. However, as it may be seen, e.g., from

G O 9 Fig. 1, because in our problem we have in fact one large
spherical ™= - plaquette(or two for the correlation functionsit is natural
Moreover, as may be seen from Figb}, the summation t0 consider only the border of this plaquette, which should be
over each index in spherical diagrams is completely indeper@lued to some kind of branched polymer. Itis seen from Fig.
dent and results in a fixed facts? for any choice of the 1(b) that the spherical surfaces are associated with the tree-
functionF(i — ) [Eq. (3)] and for each of the ensembley,  tyPe polymers. On the other hand, thel/b corrections to
(4), and(6). In particular this meangn analogous observa- G Will be associated with self-intersectionhe closed
tion was also done ifiL3]) that the Green’s function in the 100p3 of the polymer. It seems very attractive to divide the

leading approximation coincides for all ensembigy (4),  calculation of the~1/b corrections into two stages. The first
and (6), stage consists in the summation over the trees and at the

second stage one will take into account only the dressed
1 5 p self-intersected diagrams. To this end it turns out to be useful
GO:W(E_ VET—4V) (100 to consider instead of the Green’s function the logarithm

(a very clear proof of this formula for fulN X N matrices is 1

given in[6,7)). L(E)={trin
Before considering the-1/b corrections let us carefully

examine Eq.(10. As we have said aboveG, may be  The simple combinatorial calculation allows one to replace

thought of as the exact sum of the part of the sef®s the perturbative series fdr(E) by the sum over skeleton

corresponding to diagrams of spherical topology. It is seeRyraphs, as demonstrated in Fig. 2,
from Eq. (10) that this series is convergent only outside the

(11)

1 H GE—l dL
—g) SB=gtgE

circle on the compleE plane with a radiu$E|=2V. The 1 -1 /HI" 1 1

values ofG inside the circle [E|<2V) may be found via  L(E)=— — —tr —) =—= > Ztr(GyH)P.
an analytic continuation. This feature of the series has two Na=in \E N o contractionsP

important physical consequences. First, if one is approaching (12

the singular point& = + 2V starting from largeE, the more

and more complicated diagrams became important, thus apiere the contractions between the nearest neighbors in the
proaching some kind of continuum limit. This may not be solast sum are forbidden because they have been taken into
obvious from Eq.(10) because folG, the series converges account exactly irGy. More precisely, for the real symmet-
even atE=+2V, but as we will see below, the 1/b cor-  ric matrices[®=1 in Eq. (1)] the contractions between
rections to G are more singular and the summation of neighbors still are allowed, but only due to the second term
(V/IE)" is saturated by the terms with very large (~®) on the right-hand side of Eql).
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G, G, FIG. 4. Mdbius band corresponding to thel/b correction to
the Green'’s function for real symmetric matrices.

The sum rule(14) holds exactly for any choice of the
G G, functionF(]i —j|), while Eq.(13) is model dependent. How-
ever, as it will be shown now, for large, Eq. (13) is also
universal. Consider the recursion formula for langgand

FIG. 2. Reduction ofn(1—E/H) to the skeleton diagram. .
arbitraryF),

Ill. THE EDGE OF THE SPECTRUM

Now we are able to consider the edge behavior of the
~1/b corrections to the Green'’s functidg, [Eq. (10)]. To
this end in particular we have to take into account the long

llfm(i):; F(li—iD®ai)

. . . . 2Kh2 A2
chains of glued dressed links of the kind of E#2) (or Fig. o b* d®
2). Consider the simplest two-link chain, which is shown in =V + 5= g e+ (19
Fig. 3:
o - This equation is the discretén time) analog of the heat
‘I’n(ln—lo)Zi i > i (Higi,Hijip) conductivity equation. Together with the initial condition
102y - lp—1
X(Higi,Hiji) - (Hi i Hii ) Wo(i)~ 8(0) (16)
Vel — o (igmin)?
bv2mn 2nb?* 0 [ and the sum rul€l14), Eq. (15) allows one to reproduce the
formula (13) for the chain. In fact, this is the reason for
(13 considering the functiorF(]i—j|) of the form (3) as the

most universal one. Moreover, even if one starts with some
irregular functionF (which may seem to be crucial because
only for smoothF(x) may the summation be replaced by
integration with an accuracy of e~°], taking into account
long chains (>1) effectively smooths it out.

e Up to now we have considered only the band matrices.
However, formula(13) may be easily generalized for the
random-bond lattice casd),

Here in order to calculat? , we have used the specific form
of the functionF (i —j) [Eg. (3)]. The various methods may
be used in order to prove E@L3). For example, one may use
the mathematical induction method. While deriving Et)

we have replaced all the summations over the intermediat
indices iq,i,, ..., in_1 by integrations. The accuracy of
such a procedured¥~e~® for any smooth function
F(i—j) still allows one to consider the (1/b)" corrections
for anyn<b. ¥, evidently satisfies the sum rule

R 1
S Wo(i—ig)=V2", (19 W“(')zb<2ﬂn>a;2exp[_2nb27a'2]' 17

which also may be used in order to find the normalization of At this point we have completed all the preliminary for-
Eq. (13). malities and are able to calculate thel/b correction to the
Green'’s function. Let us consider the ensemble of real sym-
metric matriceGOE) for which the correction of first order
~1/b exists. The corresponding skeleton Feynman graph is
.. i/\N shown in Fig. 4. It is seen from the figure that the collinear
’l,bn(ln- 10) = "/\/\/ links should be glued in (b} order and thus this diagram is
forbidden for the HermitiatGUE) matrices. In terms of sur-
faces, Fig. 4 corresponds to the bos band. Combining
FIG. 3. Double-line chain calculated in EQL3). together Eqs(11)—(13), one finds the correction

in-] lo
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The simple counting of the power of convergence for the

higher-order diagrams shows that close to singularity the
Green'’s function should be described by some scaling func-
tion
G_1 11 ol b5 E-2V 2
VTV v/ 0
So one may conclude that the singularity at the edge

E= +2V of the perturbative Green's functid0) should be
a b C smoothed out at distanceSE~Vb~#® from the singular
points. For example, it is easy to estimate the number of
FIG. 5. Three possible second-orderl/b? diagrams for en- €NErgYy levels falling into this region. The same_estimate' evi-
semble of real symmetri(:GOE) matrices:(a) dumb-bell-shaped dently holds for the number of the levels outside the circle
diagram andb) and(c) torus. |E[>2V,

- N
1 H 151 AN~NAE®?~ —=. (22)
leﬁﬁln(l—E>=—N & 562 trHske|et0n bwg
This estimate is of particular interest because the density of
eigenvalues outside the circle is purely nonperturbative and
b & E(GOV) (27p) 2 (18) could not be found in any finite order overbl/It is to be
noted that for usuaN XN matrices(both GOE and GUE
or, for the Green’s function AE~N"??andAN~1. _
As stated in the Introduction, random band matrix may be
(G V)20 considered as a Hamiltonian for a particle on a 1D lattice
G,=6G=— 2 0 (19 with random hopping. Eigenvectors for such a Hamiltonian
(277) should naturally have some finite localization length. This
localization length for the band matrix ensembl@$ was
We give the result at once for arbitrary dimensionality found in the papers of Fyodorov and Mirl{2] within the
O0=d<e. For band matrices one has to choasel. super-symmetry methotthe calculation ofl .. in our ap-
The only important factor that is responsible for the dif- proach will be given in Sec. ¥
ference between usudl XN matrices ((=0), band matri-
ces, and random hopping Hamiltonians in Ef9) is the )
1/p%? in the sum. Technically, this factor comes from the hoe~b%| 1= 732
double chain of matrix elementd3) and (17). One may
consider the length of the Mius band(Fig. 4 p as the This result, in fact, was found only in the leading order in

oo

2
), |E|<2V. (23)

discrete time in the diffusion equatiga5). Then 1p%2 will 1/b and should change at the edge of the spectrum. One may
simply correspond to the time dependence of the return prokeombine our resul21) with Eq.(23) in order to estimate the
ability for the classical diffusive particle at tingefor differ- localization length for nonperturbative states outside of the
ent dimensions. main band(circle)

We are mostly interested in the singularities Gf at
GoV—1 [or E—*2V; see Eq.(10)]. It is seen from Eq. lige~b*AE~b®. (24)

(18) that L, has a finite limit atGyV=1 for anyd>0. On

the other hand@, [Eq. (19)] is convergent and the diagram In particularl RAN~N, which may mean that nonperturba-

of Fig. 4 approaches the continuum limit, at leastdor1  tive states spatially do not overlap.

andd=2 (for d>2 theG; is also singular, but mostly due to !N & recent papeil7] the distribution of Lyapunov expo-

G/, without any continuum limit nents for random band matrices was studied numerically at
OFor the random band matrix casg=<1) it is easy to find the very edge of the perturbative part 'of the spectrum

from Egs.(19) and (10) that close to a singular point |E|=2V. The authors of Ref.17] have considered the band

matrices with a step form of the bar€|i —j|>b)=0 for
— 3/a which there exist exactly[2+1 Lyapunov exponents. Their
G(E—2V)= 1 Ew /E 2V+ 11/ Vv result reads
vV V b 4V\E—-2V
1 const V \? N~bT @9
t = (20 o .
b V \E-2V Herei=1,2,3, ... and\, is the smallest decrement of the

Lyapunov exponent. The corresponding solution grows like
Here the last term is the order of magnitude estimate of the/\’~exphh;). Naively, one may expect that the smallest
~1/b? contribution. The Feynman diagrams corresponding-yapunov exponent directly gives the localization length
to this contribution are shown in Fig. (Bhe explicit calcula- 1
tion of one of them will be presented belpw Ny ~lige- (26)
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need to break in order to get the treelike simply connected

l k; J diagram. Now one may combine Ed42) and(13) in order

: to find the contribution of Fig. ®):

1

1 1
! H
Ly=—— ————(ky+ky+k

Lol 2 N kl,k§<3>0 2(k1+k2+k3)( 1tketk)

vl

1T 1

! X5 (Go)Mat et Ha Y, Wy (i)

I 3 oot

1

! > XV (i= W (1= ]). (27)
I k]

Here (k;,+k,+ks) 1 comes from 1 in Eq. (12) and the
combinatorial factor K; +k,+k3) 7! takes into account the
FIG. 6. Gluing of dressed hexagon for thel/b? correction for  number of positions available, say, for the left endf the

Hermitian matricegtorus. upper segmerk, on Fig. 6 and the right enfl of the same
lower segment(these points are shown by the two small

However, this simple guess puts the two res(2# and(25) circles on the figure Because these two circléesandj are

in conflict. On the other hand, the numerical accuracyl@  €quivalent the combinatorial factor is onBk;, not 22k;.

allows one to be sure in Eq25) for sufficiently largei,  Finally, after one has taken into account by thi; the
namely, i<i<b. The accurate result for the smallest freedom in definition of the starting point on the circle, the
Lyapunov exponent still may differ from Eq25). sets Ky,Kz,K3), (K2,k3,kq), and Ks,kq,k;) became indis-

Moreover, the direct correspondence between the locakinguishable, which is taken into account by the factor 1/3 in
ization length and the first Lyapunov exponent naturallyEQ. (27). The simple substitution of Eq13) into Eq. (27)
takes place in the central part of the spectfgh<2V, but  leads to
at the edgdE|=2V formula (26) is not necessarily correct.

It seems rather probable that the eigenstates outside the circle  n_ 1 (GoV)Hat2erzha 1
|E|=2V appear due to some very rare fluctuations of our 2 6b%k, Ko he>0 2mkikoks T by2w
random banded Hamiltoniad;; . Furthermore, we have no
idea even how to estimate the density of such rare fluctua- 101 1 1\,
tions. If the number of these fluctuations is small compared XeXp[ N W(k_l+ k_2+ k_3) (i=1) ]
to N/b®5 the eigenstates withE| > 2V will not be distributed
homogeneously, but will be concentrated in rather rare and _ 1 (N 29
dense bunches. On the other hand, the first Lyapunov expo- - 127b% k0 Vkiko+ kiks+Koks
nent\ ; evidently comes from the whole range of variation of
vector index. Thus the localization length|&} =2V should Thus the Green'’s function close to the edge of spectrum
not necessarily be of the same order of magnitude as the firsdr the GUE band matrices reads
Lyapunov exponent. Unfortunately, if the states with )
|E|>2V are concentrated together, one should most natu- GH—E— 1 /E_ZVLiL< Vo)V,
rally expect thatx; '>1"".. Thus the discrepancy between "V VvV V. b?VIE-2v]
Egs.(24) and (25) turns out to be severe even in this case.

In fact, in Eqs.(20) and(21) the estimate for higher-order _ 1+ i 1 ”(bzus( E_ZV)) (29)
corrections was declared without any proof. However, both VAR \ '

for the more rigorous proof of Eq21) and for future calcu-

lations it is useful to calculate explicitly at least one non-Where

trivial (beyond the one logpdiagram. Therefore, we would

like to find now the leading-1/b? correction for the GUE |:f 6(1-x—y-z) dxdydz (30)
band matrices. In this case the only diagram of Fig) that X,y,z>0 48w VXY+XzZ+ yz'

survives corresponds to a torus in the surface language. Fig-

ure 6 shows how one must glue the dressed hexgggmEq. In order to be sure that we have done nothing wrong with the
(12)] in order to build this diagram. Indicéds ,k,,k; on the ~ combinatorics one may easily repeats the calculat®f—
figure are the lengths of the double-link chais$), while  (29) for usualNx N matrices. Some newwnknown) scaling

i andj stand for the matrix indices corresponding to the endsunction ® appeared in Eq(29). We have used the same
of these segments. It is to be noted that both indicaad argument for® as ford [Eq.(21)], but the asymptotic series

j appear three times in the diagram, which in particular leadgor @ (x) is in powers ofx %4 | while for d(x) it is in

to a loss of two powers of large for this diagram compared powers ofx 572 .

to the tree ongdFig. 1(b)]. More precisely, as may be seen
also from Fig. 1b) it is not the multiple indices but the
closed loops that are the direct source of the One of the
simplest ways to find the order of the diagram in the Even more puzzling turns out to be the edge of the spec-
(1/b)" classification is to look for the number of links that trum behavior for the lattice ensembi@s. On the one hand,

IV. THE EDGE OF THE SPECTRUM FOR LATTICES
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w

FIG. 8. Reduction of tadpole diagram to the corresponding cor-
relation function.

FIG. 7. Tadpoles or new trees for lattice models. the other hand, one may try to sum up exactly this subseries
of rather simple diagrams, as done[ 5.
the naive power counting for diagrams such as the diagram The procedure of calculating the tadpole contribution is

of Fig. 5(c), which we have calculated in E¢R9), gives illustrated in Fig. 8. Let us replace eadktadpole diagram
by some correlation function of our Green'’s function and

1 1 1 E—2V (trH)" calculated in the spherical approximation. The ex-
G= v + v W‘If( b‘”(ed)( ) ) (3D plicit formula corresponding to such a procedure is
o _ ) 1 1 (xtrH)"
On the other hand, it is easy to find the first orderl(b) Gtadpole:NE trE_H ' , (33
correction to the Green’s function at the edge from @), n n: c
1 v Vv where the subscript stands for connected diagrams. The
N 'n( ) d=2 coefficientk may be found, for example, from E2). The
8mbV VE-2V | E-2V factor 1h! in Eq. (33) accounts for the permutations of vari-
= \/7 (32 ous tH. Due to this 1i! the sum ovemn results in the trivial
d>2. exponentiation oktrH. In order to findG,q,eeit is useful to
drz» adpole
2bV VE 2V (27Tp) write explicitly the integration oveH,
It is seen immediately that at least for2 Eqgs.(32) and 1 1 1
(31 disagree. In fact, the solution to this paradox was found Gtadpole_z DH ﬁtrE H

a few years ago in a paper by Anihjoet al. [15] where the
toy model for string ind dimensions was considered. The
authors of Ref[15] have restricted the class of triangulations
for string embedded id dimensions to those having a mini-
mal cross section. While doing so they obtained effectivelyHere M (i —j)~F(i—j) ' and Z is the same integral with-
the theory of al-dimensional branched polymer. As we have out (IN)tr[1/(E—H)], but with «trH included in the argu-
mentioned above, the summation over dual Feynman diament of the exponent. By such a choicezobne gets rid of
grams for our band matrices lattices also reduces to the sungisconnected diagrams.

mation over some branched polymers. In the lattice case in- At least in the leadingspherical approximation formulas
dices assigned to the ends of each link expand ove{33) and(34) give the same Green’s function at the edge. On
d-dimensionakalthough discretizedEuclidean space, while the other hand, the Green's functidB4) reduces to the

the factorF (i —J) [Eq. (4)] regulates the spatial size of the Zeroth-order on¢10) by the trivial substitution
link just like in the model ofl15]. The branched polymers

Xexp{—z H”HJ|M(|_J)+KUH . (34)
1]

were also considered many times within the random vector- Hij—Hij + consgy; (35
matrix model approaclisee, e.g.[18]). However, only the E_E+ const
critical exponents for our model of branched polyméss '
more precisely, “branched tapes,” as seen in Figs. 4, 5, an@\fter a comparison with Eq(32), one finds
7) should coincide with those for another model. The scaling
function itself may be different. 1 1 \/E—ZV 1 \%
In order to solve the contradiction between E@l) and vV VvV VR 47Tb|“( E—ZV)’ d=2
(32) it is enough to observe that fat=2 some of the dia- G= -
grams for the branched polymer are much more singular than 11 \/E 2v 1 1
others with the same topology. These are the so-called tad- IVARY; Y, E 2mp) 92 d>2.
pole diagrams shown in Fig. 7. Moreover, each of the dia- (36)

grams of Fig. 7 behaves effectively like some tree diagram

[see Fig. 1b)] up to some trivial factor associated with the Ford>2 this result is almost trivial. Taking into account the
ends of the tree. Therefore, while the true complicated diamost singular series of corrections result in a simple shift of
grams[say of Figs. B) and 5c)] become less and less sin- the edge of the cut. Fail=2, taking into account the tad-
gular in higher dimensions in accordance with E8fl), the  poles results not only in the shift of the edge by
tadpole diagrams fod>2 all have the same singularity. On AE~In(b)/b, but also in some nontrivial change of the
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VGy(E,)=e'¢ M2, (37)
VGy(Ep)=e '*7M2,
where small\ is given by

Ei—E;
A=———2°" Re\>0. (39)

CiVave—g?’

Thus again at least those subseries of diagrams that will have
as the expansion parameter the combination
Green’s function. The singularity in E§36) for d=2 will V2Gy(E;)Go(E,)=e " may approach the continuum limit
be smoothed out 4E — 2V — (V/2b)In(b)|~V/b by some un-  (another less direct example of the “effective” continuum
known scaling function. limit will be considered in Sec. IV A

For GUE matriceglattices the simple tadpoles consisting In order to find the correlation function of two Green’s
of a small Mdius band are forbidden. However, one mayfunctions it is natural again to consider the logarithms
arrange the slightly more complicatedl/b? tadpole shown
in Fig. 9 which is allowed also for oriented surfaces. As aTrIn( 1— i) Trln( 1— i
result for the GUE lattices with random bonds the critical = E>
dimension isd=4 instead ofd=2.

FIG. 9. The~1/b? tadpole for HermitianlGUE) matrices.

c

1

1 )
=2 TH(Go(EDH)™ beetery TH(Go( E2)H) P skerer
p.p’
V. CORRELATION FUNCTION
N p 1
_ N | =2 a2 o7 sanl V2Go(E1)Go(Ex)]".  (39)
Physically, the most interesting quantity that would be (2m)75% p7p

calculated with the random matrix ensembles may be th . .
. : : . y %ere we have expanded each logarithm in the sum of closed
two-point correlation function of the density of states at very?keleton chains like in Eq12). Also here and below sub-

close energies. It is generally believed that just such loca]

uantities most adequately reproduce the measurable feS(—:riptC means ‘‘connected.” A factor 2 in front of the last
q . q y rep 8um accounts for two allowed directions of glued chains
tures of complicated quantum systems.

f v th bati q hich (cooperon and diffuson in solid-state physicsinally, one
Unfortunately, the perturbative procedure, which we are,mpinatorial factop in the last sum accounts for the num-

able to perform, has a serious drawback in the case of COlgr of gifferent ways to contract two skeleton rings of the

relation functions. As stated in Sec. Il, the perturbative Serieﬁangthp. We see that just the > [Eq. (38)] turns out to be
in 1/E are convergent only outside the cir¢le|>2V, while  the expansion parameter in EG9).

the series in 1 turns out to be the asymptotic series. Be- By Simp|e differentiation of Eq(39) one finds the corre-
sides the perturbation theory there may exist some nonpefation function at very close energi&s —E,—0,
turbative contributions, say, of the form~exdg—b(E

© 1-di2

—2V)7], with somey~1. However, after an analytic con- 1 1 2N p ap
tinuation to the border of the. cut, which goes from TrEl—HTrEZ—HCZb(4V2—E2)F,§=:1 (27.,)d/2e
E=—-2V to E=2V, these corrections may b@nd are at

least for the usuaN XN matrix ensemblesconverted into [ 2-ai2

some oscillating functions such assin(p’?AE). Certainly, in E,—E, , d<4

our perturbative result all these oscillating ter(iighere are ~ (40)
any) will be smoothed out. For example, for the usual GUE [\

ensemble one gets instead of the exact result In( E,— Ez)’ d=4.

K(AE) = sir®(NAE)/AE? only K =0.5/AE2. Due to this prin-
cipal limitation the quantities that we would calculate areThis equation reproduces the known result of Al'tshuler and
called the smoothed correlators. Shklovskii[19] for the correlation of energy levels in small
The intriguing feature of our diagrammatic series that waglisordered metallic samples.
considered in the previous sections is that the dressed Feyn- The factor 1p%? in Egs.(39) and (40) appears after glu-
man diagrams at the edge of the spectrum approach sonied two HP into a closed two-link chairf13) and (17). As
kind of continuum limit. Technically, it happens because thestated after Eq(19), this factor 1p% works effectively as
value of[VGy(E)]? [Eq. (10)], which was our actual expan- the probability for a diffusive particle to return to the origin
sion parameter, became equa[¥G,(2V)]2=1 at the bor-  after timep. In principle, one may go even further in this
der. Now, because we are going to work with the energiegnalogy with classical diffusion. By making the Fourier
inside the bandiE; J <2V there seems to be no room for the transform of the function? (i — i) [Egs.(13) and(17)] Eq.
continuum limit. However, leE; approach the upper border (40) may be written in the form of the integral of the squared
andE, approach the lower border of the cut. Then it follows Green’s function of the diffusion equatidiagain in agree-
immediately from Eq(10) that ment with corresponding formulas frofd9]).
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Now let us consider in more detail the correlation func-
tion for band matricesd=1). We would like to show how
the information contained in the smoothed correlation func-
tion (40) combined with the simple hypothesis of the univer-
sality of spectral correlations allows one to find the correct
estimate of the localization length for eigenvectors of ran-
dom band matrices. Consider instead of the Green’s function
G the density of eigenvalueg(E), which is simply the
imaginary part ofG [Eq. (5)]. It is generally recognized that
the fluctuations ofp(E) for all ensembles of full random
NXN matrices are universal. This means that, being prop-
erly normalized, the density of states—density of states cor-
relation function has the form

b
(41)

p(E1)p(Er)c dan
=—————==K| =(E;1~Ey) |.
FIG. 10. The~1/b corrections to the correlation functiofa)

p(E1) p(Ep) dE
) ) singular corrections like NE® for d=1 and(b) singular correc-
Here the functiorK(x)~1 atx~1 anddn/dE is the aver- tjons like 1AE52 for d=1.

aged density of eigenstates. Of course, lib{tandE, in Eq.
(41) are real(have reached the border of the jcuthe de-  Now, from Eq.(40) one finds the asymptotics
tailed form of K(x) is specific for the ensemble under con-

sideration(e.g., the GUE or GOE but for a given ensemble p(Epp(Ey), —1 v4 1

K is the universal function of the energy interval (Ey) p(Ep) “Nb (4VZ—E®TRE,—E, |7 (45)
AE=E;—E, measured in units of the mean interlevel spac- PiEL Pi=2

ing dE/dN . Together with Eqs(41) and (42), this correlation function

For the random band matrices one may expect the samg|ows one to find
universal behavior of the correlation of density of state fluc-

tuations as Eq41) only if all eigenvectors are delocalized. ) 2

On the other hand, it is easy to write down the natural ex- I=b% 1~ VAR (46)
tension of the formuld41) for systems with finite localiza-

tion lengthl: in accordance with the result of Fyodorov and Mifl2]. We

have defined here the localization lendtir the effective
(E))p(Ey)e | | dn localization length by choosing the overall normalization
ﬁzﬁ (N d_E(El_Ez))- (42 constant in Eq.(46) to be equal to one. Formally,
PAEL PRE2 universality-based arguments allows one to firhly up to

By writing this formula we suppose that the fluctuations of SCMe normalization constantl , which, on the other hand,
the density of energy levels for random band matrices stidepends on the explicit definition one uses for the localiza-

are universal if the energy differenceE=E,—E, is mea- tion length. For exampld, defined via the inverse participa-
sured in the units of effective mean interlevel spacing

tion ratio[ 2] or by the first Lyapunov exponent may differ by
some trivial factor. Anyway, our estimatéE) seems to be

N dE much less complicated than those of the supersymmetric ap-
AEg4~ Tan (43) proach of[2].

Roughly speakingAE. is the mean interlevel spacing for a A. Corrections to the correlator

band matrix of a finite siz&l~1 [of course, in Eqs(41) and In this subsection we would like to consider thel/b

(42) we suppose that at least-b]. Moreover, if the modi-  corrections to the correlation function. As it was explained

fied universality takes place ahg-b, formulas(42) and(43)  above, we are able to calculate only the smoothed correlation
will also account for the energy dependence of the localizafunctions. More concretely, we are able to consider the
tion length. Of course, the two universal functiok$x) in Green’s functions not too close to the border of the cut

Egs.(41) and(42) are completely different. [IME|>AE 4~ V/b? [Egs.(43) and(46)]. Nevertheless, the
Our line of reasoning, in fact, follows the consideration of uncertainty in the correlation function due to smoothening of
[16] (see alsd20]) for the density-density correlator in dis- fast oscillations decreases exponentially like

ordered metal. Now we would simply like to convert the ~exp(—ImE/AE.q). Therefore, even for a smoothed corre-
arguments of the authors of R16] in order to estimate the |ation function one is able to consider the corrections of any
localization length. The averaged density of states for larg@inite order in 1b.

b may be easily found from Eq10), The skeleton diagrams for thel/b correction to the cor-
g relation function(40) and(45) are shown in Fig. 10. At first
— dN 1 ———+ N one may easily estimate the power of singularity for each
- _ _ M2_F2
p(E)= dE WImtrG(E 10) 2mV? AVI-ES diagram at smalAE. These singularities are associated with

(44)  the number of summations over the length of tape glued
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from the segments originating from two different logarithms _ 2N 1 @2 Pk=A(pg+pa+Ik|)
[Eq. (39)] In(1—H/Ey) and In(3-H/E,). Thus, compared to O(LL)a= b_ETp1%;>O 700;(@0 (279 (pp K72
the zeroth-order resulf40) and (45) the diagrams of Fig.
10(a) are of the relative amplitude-b™*AE~2%92 while 1 1 1)\79
the diagrams of Fig. 18) are of the relative amplitude X _1+E+m
~b AEL. ‘

On the other hand, the hypothesis of universaig) that _ﬁz g2 Pk NP1+ P2tk 48
allows us to find so successfully the localization lengtf) “ b2 (27) 9 pipat K| (p1t+ py) ]9

leads to a strong restriction on the possible form of correc-

tions to the correlation function. As we have considered inNaively, the summation ovep, andp, here gives the sin-
Sec. II, the spherical result for the correlation functig) is ~ gularity ~\~2"¢ (and the additional factox =2 will appear
the exact result in the large-limit. Therefore, the correc- after differentiation with respect t; andE,, which should
tions to Eq.(45) should be of the relative order1/b. Due to P& done in order to get the correlation function of two

the universality(42), b may in turn appear in the result only Green’s functions However, at least this leading singularity
in the combination E,— E,)/AE g~ (E,— Ey)l should disappear after the summation olkefFor example,
€

_ 2i pk—\|K| ivi -
~(E,— E,)b? [see Eqs(42), (43), and(46)]. Thus the only for d=0 one hasx,e A [an even more trivial ex

i _ k: -
form of the correlation function consistent with the univer- amplg of the same kind 8(—1)"=0]. Ford+0 some can
sality condition(42) is cellation also should take place at least for lapgg, which,

on the other hand, are responsible for the “naive” singular-
ity of Eq. (48). Thus again one may see that laiger long

- 1 - 1 N chains on the diagrartcontinuum limiy turn out to be im-
rEl_H rEz_HC b(El_E2)3/2 portant. ] ) L o
In order to treat this cancellation explicitly it is conve-
const nient to divide the contribution of Fig. 18 into two parts
X| 1+ ——=+---|. (47 e
byvEL—E> S(LL),=A+B,
N

However, this expression evidently contradicts the simple A=m——g g2 Pk NP1t Pt IKD

. . . b 2 — o0 ]
estimate of any of the diagrams of Fig. 10. (27) by Tpp>0 —Ske

Thus we have to choose between the two scenarios. First, 1 1
as seen from the_ naive estimates, th&/b cor_rect|ons to th_e _ (p1po+ K[ (p1+ pz))d/z pcluz(p2+|k|)d/z
correlation function may be much more singular than it is

expected from the universalit{47). In this case the~1/b 1
contributions blow up aAE much larger than the effective B W ' (49)
energy level spacind E¢« [Eg. (43)], which will be the in-
dication of some other physics at the intermediate energies 2N e~ \P 21 $k—\(p" +]K|)
AEer<AE<V. B= b2(2m)¢ >~ ORI

In the second scenario the universali2) and(47) takes )T p>0 P prog —e<k<e (P

place and all the additional singularities cancel each other Mere in theA part the contribution with largp, andp,, will

the sum of different diagrams. _ be suppressed due to the summation dyewhile the con-

In fact, the aim of this section is to demonstrate explicitly yipution with say,p,<p, will be suppressed due to simple
that at least the-1/b corrections to the correlation function -5ncellation of the two terms in the curly brackets in Eq.
do not violate the universality42) and (47) and all the ad- (49). In the B part summations ovep are factorized and
ditional singularities vanish after a huge cancellation be'only the summation ovep’ suffers from the cancellation
tween the diagrams of Fig. 10. due to oscillations.

The analogous cancellation between the high-order cor- |n a similar way one may write down the contribution of
rections to the correlation functions has been previously obnaively less singular diagrams of Fig. (bf)
served for usuaNXxXN random matrices by Verbaarschot
etal.[7,8].

Consider first the most singular diagrams of Fig(al0
The calculation of the corresponding contribution to the cor- '
relation function of two logarithm¢39) has much in com- OIS o B
mon with the calculation of the-1/b? correction to the X € &y q¥? t(d——¢)
Green'’s function at the edg@7)—(29). The main difference
is that now two of the double-link chains are accompanied 2N
by the factor[V2Gy(E;)Go(E,)]P=e *P , while the third = b2(2)0
chain is associated with the oscillating contribution

e \p
an

2N
b2(2m)¢

S(LL)p=

p>0 P

k=0

e M

drz
p>0 p

[VZGS(ELZ)]'Eexp(i2ik¢—k)\). It is convenient to bring @2i pk—Ak|
together into one expression both diagrams of Figajl0 X o' +1kN2 (- (50
—oo<k<oo —|k|<p’'=0 (p | |)
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The situation is further simplified if one combines this con-

tribution with the most singular paB [Eq. (49)] of the dia-

grams in Fig. 10a). After a simple change of variables

p’'—qg=p’+|k| one gets

e P

S(LL)p+ B ) >
( )b _b2(277)d o pd/2

S g2igk-AlK

—oo<k<w >0

1
X@nexp{—k(q—lkl)ﬁ(q—lkl)}- (51)

Here (x) =0 for x<<0 andé(x)=1 for x>0. Now the sum
overk may be found exactly,

— 2N e P cog2q¢p)e M
o(LL)p+B= b2(2m)¢ pzo 002 )\qu_qdm'

(52

We see that this contribution as a functiondofurns out to

be as singular as the leading-order re$8® and(40), but is

suppressed like b/and therefore should be neglected.
Thus let us consider the only surviving contributién

from Eq.(49). For simplicity consider the band matrices only

(d=1). After differentiation with respect t&, andE, one
gets

N

S(TrG,TrG,) = mE @2l $k—N(pg+pa+(K)

1
PP+ [K|(p1+P2)

X(py+ p2+|k|)2[

1 1
- - . (53
Vpa(p2+[K)) \/PZ(P1+|k|)}

As we will see bothp; andp, in this sum effectively turn

6429
ny
k] k2
i — J
n
FIG. 11. Spatially inhomogeneous correlation function
p(E1.i)p(Ez.j).
N p(E1)p(Ez)
K(El_Ez):T———C
p(E1) p(Ez)
_—1( AEq )3’2
2 \|E1—Ey
AEeff 1/2
X 1+2(— +---1, (56
|E1—Ey

whereAE4=N[271p(E)] ! andl =b?(1—E?/4V?) in ac-
cordance with Eqs42), (46), and(47). For convenience we
have added one factor ¢ ! into the definition of AE
compared to Eq43).

To conclude this section let us recall again that we con-
sider only the smoothed correlation functions. If one would
like to compare our Eq(56) with the result of numerical
matrix diagonalization, the “experimental” result should be
averaged with some smooth weight function. For example, it
may be

out to be large. Therefore, in order not to get an exponen-

tially small result one has to consider the contributions in the
sum that are singular ik. These singularities naturally ap-

pear due tgk| in Eq. (53). The following simple identity
shows how one may utilize this |k| behavior:

2sirte’
(54

E |k|e2iqbk7)\\k\zz |k|e2i¢kf)\\k\f(k):

where f(k) is any smooth and slow function df and
f(0)=1. Taking into account that\2sing=/4V?—EZ, one
finds from(53) and (54)

S ANV? P1+ P2
S(TrG,TrG,) = g~ (PrtPI)
1 2 b2(4V2— E2)2pl’p2 20 /_p:Lp2
-N 2vZ 1

= b7 AV-E? AET ©9

dx
Ksmoott(AE):J' Kexpt(AE+KX)e_xz_

\/;l
whereAE 4<k<AE.

VI. SPATIALLY INHOMOGENEOUS EXAMPLES

The quantities that we have tried to calculate up to now—
the density of states and density-density correlation
function—are generally considered for the ushiat N ran-
dom matrices. In this section we would like to consider the
two quantities that are specific for band matrices and never
appear for the usudl X N ones.

The first example will be the correlation function of the
local density of statep(E,i) for different energies and dif-
ferent vector indice41D lattice siteg i and j. The corre-
sponding dressed Feynman diagram is shown in Fig. 11.
Again one should calculate first the log-log correlation func-
tion. After differentiation with respect t&,; andE, and tak-

Finally, the smoothed density-density correlation functioning the imaginary part of the Green’s functions, the correla-

for band matrices takes the form

tion function takes the form
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[Go(E1) VI [Go(E2) V1?2 Go(E1) Go( Ep) V2" "2

_—— 1
P(E1D)p(Ez.])e=—2p7Go(E1)Go(E)Re > X

k1,20 ny+ny>0 V(ky+kp) (N +ny)+n1ny
277 p %Ek k nlnz
17K n;+n,

Here neithem, nor n, could be negative. This equation is gime (40) to the Wigner-Dyson regime in the asymptotics of
further simplified if one takes into account that effectively the smoothed density-density correlation function for finite-
k1 ,<n;,. Therefore, the&; , may be neglected in the expo- size band matrices.

nent and in the square root in the denominator and the sum Consider the periodibl X N band matrices. The statistical
over k; andk, reduces to the simple geometrical progres-properties of this Gaussian ensemble are again defined by the
sion. Finally, the summations over, andn, factorize and second momentl), but now the functiorF takes the form

the correlation function takes rather simple form o

E-Do(Eli). 1 F(i.j)= X f(i—j+nN). (62
p(Elal)P(EZ!])c:m n=—o

12 Here f(k)=f(|k|) vanishes foik>b just like F in Eq. (1).
e " p| (i=]) H The parameter¥ andb (the strength of the interaction and

XR{E

~ J2mn ~2nb? width of the bang are now defined as
(59 N e >n?f(n)
VE= 2 FAD=2 1), bP=—p . (69

Here \ is defined by Eq(38). One may easily investigate,
for example, small and large- j limits of this expression. In
terms of universal variableAE+ and| [Eq. (56)], the cor-
relation function(59) takes the form

which is the natural generalization of Eg). The analog of
Eq. (15) for the two-link chain has the form

- N + o0
p(E1,)p(Ez,j)e 1 (i—j)zRer p{ 1 E-E Wora()=2, F(L,DVa()= 2 f(i—)Pa(i),
—_— = — expy — — j=1 j=—»
[p(E)/IN]? 2w\ | 0 4i AEgg 64)
[0 e g 60 Wo(j +N) =W ()
| 2y2 y| - n n\J/-

The solution of this equation for sufficiently large(and for
Here Im(E, — E,)>0 and the integral should be squared be-ph<N) reads
fore taking the real part. We have dividedE) by N in the

left-hand side of Eq(60) in order to get rid of the physically ] V2" (i—kN)?
trivial N dependence on the right-hand side. Wi(i)= mEk XD~ nez | (65)
Finally, the integration ovey in Eg. (60) may be done 7T
explicitly, which leads to The leading-order spherical Green's functidf) due to Eq.
S ) (63) [see also the discussion before ELD)] is not changed.
P(E1,)p(Ezj)e _1 e{ 1AEf Therefore, the trivial modification of Eq40) gives
[p(E)IN]? 2 1E—E \
Ei—Ep|i—j| p(El)p(EZ)Czwzb(4v2—EZ)
Xexp — - —_—
iA Eeff | % 0 D
= — —| —— (61) p=1 k=-—w a
2\ 1 2
" 1 (kN) 2 66
wheret=|i—j|/IJ|E;—E,|/AEqx . In particular one may ex 2p\ b ’ (66)
easily examine that after the summation ovandj Eq.(61)
leads to the usual correlation functios). wherel again is defined by Eq38). This expression may be

Other interesting objects that may be considered easilfurther simplified in two limiting cases. IN is small,
within our technique are the finite-size band matrices. Natunamely, N<<b/+/\, one may replace the summation over
rally, the most interesting case lis<N<b?2. Below we de- by integration. In this case Ed66) reduces to the usual
scribe analytically the crossover from the band matrix re-Wigner-Dyson correlation function p(Eq)p(E,).
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~1/(E;—E,)?. If N>b/\/\ only k=0 survives in the sec- tonian with random hoppingSection V). Unfortunately, it
ond sum and Eq(66) coincides with the pure band matrix may not be so easy to find a physical system whose global
result(45). spectral properties will be described by the random band
Also it may be convenient to use the “physica|” vari- matrices with their_ almOSt.SemiCi_rcular_ den3|ty of states.
ables: the localization length=b2(1—E%/4V?) and effec- Nevertheless, the interest in the investigation of the edge
behavior and the tails of spectral density have been demon-
strated in recent papef&4,17.
In almost all applications of random matrix theory one is
interested in local characteristics of the spectrum such as
correlations of very close or even neighboring energy levels.

tive interlevel spacingAE.s=N[27Ip(E)] ! [note that
AE.4 does not depend oN becausep(E)~N], as in Egs.
(56) and(60). Now one has instead of E(66)

p(E1)p(Ej). 1 1 © ) In Sec. V we calculated the asymptotics of the two-point
. \/S_N e k_Z x“dx correlation function of the density of staté40) and (45),
[p(E)]) ™ 0 k=== which is in agreement with the result of REL9] for energy-
1 E;—E, KN\2 1 level correlations in disordered metals. Moreover, together
Xexp( - EHXZ—(I—) ﬁ] with the hypothesis of the universality of spectral correla-

tions [16], our result(45) allowed us to estimate the local-
[ AEq |32 ization length(46) for random band matrices and this calcu-
=- m(m) lation seems to be much less complicated than those known
1 2 H
from literature[2].
d \ sinh(7)+sin(7) On the other hand, we were able to calculate only the
X(l—TE_)m, (67) asymptotics(plus corrections of the correlation function
which, in principle, should not necessarily manifest univer-
] sality. The universal behavior of E§45) shows that there
wherer=(N/2l) J|E; —E,|/AEeq . In particular forr<1 or 4o only two different energy scales in the model: the global
1 this equation corresponds to the usual Wigner-DysoRyidth of the energy zondE=4V and the effective inter-
or band matrix(56) results. level splitting AE¢ (43) and(56). The hypothesis of univer-
sality finds further support in the calculation of the first cor-
rection to the two-point correlation functidb6). To the best
VII. CONCLUSION of my knowledge, it is the first calculation of subleading
orrections for quasi-1D systems. However, the calculation

Random matrix models are usually expected to describ& . .
f the correction also shows a serious drawback of our per-

some universal and very general features of complicate .
guantum systems. Therefore, on the one hand, one and t lérbatlve approach. The accurate res@) and (56) was

same very simple model may be associated with a variety o und only after th huge two-step cancellatio_n. One may
physical systems. On the other hand, this model will be gengpeculate that this is the price to pay for working very far

erally able to explain only simplified versions of a real com-from the region of convergence of the initial se-nesl_—HE.
plicated problem, say, properties of only very small metaIIicNeverthel.es.S' these cancellaﬂons show that it V.V'” beex-
grains. In this paper we have considered banded random mH_emer difficult to reach the regiof; —E,~AEe in our
trices, which at least formally seem to be much closer to rea?ppr_oach. . .
physical systems. For example, realistic Hamiltonians in the Fmally, in Sec. vl we found thg asymptotics of the local
shell model for complicated atorf21] and atomic nuclei density of state two-point correlatlon.fqnctl@O) as well as
[22] were shown to have a banded structure. Also, being éhe usual two-point correlator'for a f|n|te-5|'ze quaS|—1D. Sys-
good example of quasi-1D quantum systems, random ban m (67). These _relat|vely simple analytlce_ll calculatl_ons
matrices are expected to depict adequately properties of ele emonstrate again th_e u_sefulness of the _d|_agrammat|c ap-
trons in thick wireg2,3,5] (see alsg23], where the mapping proach for the investigation of such nontrivial systems as
of the Hamiltonian for a disordered wire onto a randomrandom band matrices.
banded block-diagonal matrix was done expligitly ACKNOWLEDGMENTS
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