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Summing graphs for random band matrices

P. G. Silvestrov
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

and The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark
~Received 12 November 1996!

A method of resummation of infinite series of perturbation theory diagrams is applied for studying the
properties of random band matrices. The topological classification of Feynman diagrams, which was actively
used in recent years for matrix model regularization of two-dimensional gravity, turns out to be very useful for
band matrices. The critical behavior at the edge of the spectrum and the asymptotics of the energy-level
correlation function are considered. This correlation function, together with the hypothesis about universality
of spectral correlations, allows one to estimate easily the localization length for eigenvectors. A smoothed
two-point correlation function of the local density of statesr(E1 ,i )r(E2 , j )c , as well as the energy-level
correlation for finite-size band matrices, is also found. Ad-dimensional generalization of band matrix lattice
Hamiltonians with long-range random hopping is considered as well.@S1063-651X~97!01905-3#

PACS number~s!: 05.45.1b, 72.15.Rn
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I. INTRODUCTION

Random band matrices were introduced many years
by Wigner@1# as a model Hamiltonian for complicated qua
tum systems. In the past few years statistical propertie
random band matrices have again become the subject o
tensive analytical and numerical investigation@2–4# due to
their application to condensed-matter physics and the st
tics of the spectrum of chaotic systems.

Up to now all the analytical results for these quasi-on
dimensional systems~for review see@2#! were obtained by
mapping them onto a super-symmetrics model @5#. How-
ever, in this paper we would like to develop another meth
for calculation with random banded matrix ensembl
Roughly speaking, our method consists of the summatio
an infinite series of perturbation theory diagrams. Diagra
matic methods were used many years ago@6,7# for the inves-
tigation of Gaussian ensembles ofN3N matrices, but later
this approach was almost forgotten for years. Our aim in
paper will be to show how this ‘‘old’’ method may lea
rather easily to new results for band matrices.

Let us consider a Gaussian ensemble of random band
trices. Due to the Wick theorem such ensembles may
completely defined by the second moment

Hi jHkn5F~ i2 j !~d jkd in1Qd jnd ik!. ~1!

The functionF( i2 j )5F(u i2 j u) vanishes very rapidly out
side the band~at u i2 j u.b@1). The parameterQ takes val-
ues 0 or 1. IfQ50, one is dealing with Hermitian matrice
of general form@a Gaussian unitary ensemble~GUE!#, while
Q51 corresponds to the real symmetric matrices@a Gauss-
ian orthogonal ensemble~GOE!#. @However, the notations
GUE and GOE for our ensembles are mainly traditio
since unitary~orthogonal! invariance is broken explicitly for
banded matrices.# It is convenient to define the width of th
bandb and the typical strength of the interactionV through
moments of the functionF:
551063-651X/97/55~6!/6419~14!/$10.00
go

of
in-

is-

-

d
.
of
-

is

a-
e

l

b25
F2

F0
5

( n2F~n!

( F~n!

, ~2!

V25F05( F~n!.

For practical computations we will sometimes useF of the
form

F~ i2 j !5
V2

bA2p
expS 2

~ i2 j !2

2b2 D . ~3!

As will be shown below, the results essentially do not d
pend on the details of the shape of the functionF( i2 j ). We
need onlyF( i2 j ) to be sufficiently smooth so that afte
averaging Eq.~1! all discrete sums may be replaced by int
grals up to negligible corrections;exp(2b). In doing so we
still are able to consider the corrections of any finite order
1/b. Moreover, we argue below that even the smoothnes
F does not seem to be necessary for most interesting a
cations@see Eqs.~15! and ~16! and the discussion below; i
will also be shown why Eq.~3! is the most natural choice o
F#.

By a simpled-dimensional extension of band matrice
one obtains the Hamiltonian for particle hopping on
d-dimensional lattice with a random nonlocal interactio
This lattice model may be described by the same formu
~1!–~3! with simple replacement of all integer indices by th
integerd vectors and trivial redefinition ofF:

i→ iW,F~ iW2 jW !5
V2

b~2p!d/2
expS 2

~ iW2 jW !2

2b2/d
D . ~4!

Contrary to band matrices, properties of this model seem
be completely unknown. Theb@1 in Eq. ~4! is effectively
the number of ‘‘neighbors’’ connected to each lattice si
The band matrices~1! may now be associated with the ra
dom Hamiltonian for a one-dimensional lattice.
6419 © 1997 The American Physical Society
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The ‘‘physical quantities’’ that we would like to conside
are connected with the Green’s function and the local den
of states

Gi , j~E!5S 1

E2H D
i , j

, r~E,i !5
1

p
ImGi ,i~E2 i0!. ~5!

There is no summation overi in Gi ,i in formula~s!. More
specifically, we would like to consider the averaged dens
of statesr̄(E) and the correlation of densities for differe
but very close energies~and even for different positionsi
and j ).

It is also constructive to compare our results with tho
for the ensembles of usualN3N random matrices, which ar
defined by the second moment

F~ i2 j ![
V2

N
, Hi jHmn5

V2

N
~d jmd in1Qd jnd im!. ~6!

This Hamiltonian may be considered as thed50 reduction
of the lattice model~4!. Historically three main approache
were applied for studying the statistics of the fullN3N ma-
trices. The description of these approaches may be fo
e.g., in Refs.@7–9#. The first one is the summation of a
infinite power series inV/E @7#. The other two methods ar
the replica trick@8# and the supersymmetry method@9#.

The success of both replicas and supersymmetry is es
tially based on the use of the Hubbard-Stratonovich trans
mation. ForN3N matrices this transformation reduces t
problem to an almost trivial calculation of a few-dimension
integral. On the other hand, for band matrices, even after
Hubbard-Stratonovich transformation, one still is faced w
a s model on the one-dimensional lattice. Thus it see
quite probable that neither replicas nor super-symmetry
lead to considerable progress in the lattice model~4!.

The exact solution of two-dimensional~2D! quantum
gravity @10# stimulated the explosion of interest in matr
models. In this application of random matrices the d
cretized random surfaces appear as Feynman graphs i
perturbative expansion of the matrix integral. However, te
nically, the famous double scaling solution of 2D gravity h
nothing to do with the summation of graphs. For ensemb
invariant under orthogonal transformations it is useful
work with N eigenvalues instead of allN2 matrix elements.
Unfortunately, for band matrices, or the lattice hoppi
Hamiltonian, we could not find such a simple solution, whi
is not based on the diagrammatic expansion. Neverthe
for models~1! and ~4! the topological classification of dia
grams, which arose in 2D gravity~and originally in QCD
@11#!, simplifies drastically the summation of the series.

This experience of dealing with the matrix integrals f
2D gravity was later used for solving the problems typic
for quantum chaos. In@12# a method of calculation of corr
elators of the Green’s functions for ensembles of la
N3N matrices was developed. An approach based on
summation of perturbation theory series for various
sembles of random matrices was also used in the serie
papers of Brezin and Zee~see, e.g.,@13# and later papers by
the same authors!, though their diagrammatic technique di
fers from that used in the present paper.
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The statistics of band matrices with parameters of
band slowly varying along the diagonal was considered
@14#. The behavior of the edge of the spectrum for this e
tension of the model~1! showed some surprising similaritie
with the edge properties of matrix ensembles considered
the 2D gravity. The topological classification of the diagram
that we will explore below was also briefly discussed in@14#.

The organization of this article is as follows. The gene
description of the diagrammatic technique is given in Sec
By a comparison with theN3N case a diagrammatic proo
of the semicircular density of states is found. We also
velop a partial summation of an infinite subseries of top
logically trivial tree-type diagrams. In Sec. III the ideolog
of the double scaling limit is used to study the edge of
spectrum for random band matrices. The edge of the sp
trum for lattice model~4! is considered in Sec. IV. Surpris
ingly, the critical behavior at the edge for lattices with ra
dom hopping coincides with the critical behavior of th
string-theory inspired model considered in@15#. In Sec. V
the two-point correlation functionr(E1)r(E2)c is calcu-
lated. More precisely, we found the so-called smoothed c
relation function in the large-b limit and the first;1/b cor-
rection to it. Moreover, together with the hypothesis abo
the universality of spectrum fluctuations@16#, this correlation
function allows one to find the correct estimate of the loc
ization length for the eigenfunctions of band matrix. Th
universality holds also for the;1/b correction to the corre-
lation function, even though the;1/b correction itself turns
out to be the subject of strong cancellations. Finally, in S
VI some quantities that have no analog for usualN3N ma-
trices are considered. These are the correlation function
the local density statesr(E1 ,i )r(E2 , j )c and the usual
density-density correlation function for the banded matric
of finite sizeN.

II. DIAGRAMMATIC TECHNIQUE

It follows immediately from Eq.~1! that only diagonal
terms survive in the averaged Green’s function

Ḡi , j5G~E!d i , j . ~7!

Let us expandG(E) in a formal series

G5
1

N
tr

1

E2H
5

1

NE(
n50

`

trSHE D n. ~8!

Now all we need is to use the Wick theorem and the sec
moment~1! to calculate all the average values of the trace
the product ofH matrices. In the standard Feynman diagra
technique eachHn corresponds ton-leg vertices and the av
eraging in Eq.~8! reduces to counting the number of possib
ways of contracting these legs to each other. However,
in 2D gravity, it is more convenient to draw the dual Fey
man graphs. For dual diagrams eachHi j corresponds to a
segment with numbersi and j at the ends, whileHn corre-
sponds to an n-vertex polygon with matrix indices
i 1 ,i 2 , . . . ,i n assigned to the vertices@see Fig. 1~a!#. It is also
useful to draw the arrow on each segment showing the
rection from the first to the second index. Within this la
guage, the Wick contractions in Eq.~8! correspond to the
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55 6421SUMMING GRAPHS FOR RANDOM BAND MATRICES
gluing of pairs of segments. Our aim now is to calculate
number of ways in which the edges of the polygon may
glued into some closed surface.

For Hermitian matrices@Q50 in Eq. ~1!# the segments
should be glued in the opposite direction, thus forming
oriented surface. For symmetric matrices (Q51) the nonori-
ented surfaces are also allowed~e.g., the Mo¨bius band!.

An example of the simplest surface of spherical topolo
is shown in Fig. 1~b!. It is easy to verify that just the spher
cal surfaces dominate inG at largeb. Only in this case does
the sum overn matrix indices forHn give the factorNb0 and
thus @see Eqs.~1! and ~2!#

Gspherical;b0. ~9!

Moreover, as may be seen from Fig. 1~b!, the summation
over each index in spherical diagrams is completely indep
dent and results in a fixed factorV2 for any choice of the
functionF( i2 j ) @Eq. ~3!# and for each of the ensembles~1!,
~4!, and~6!. In particular this means~an analogous observa
tion was also done in@13#! that the Green’s function in the
leading approximation coincides for all ensembles~1!, ~4!,
and ~6!,

G05
1

2V2 ~E2AE224V2! ~10!

~a very clear proof of this formula for fullN3N matrices is
given in @6,7#!.

Before considering the;1/b corrections let us carefully
examine Eq.~10!. As we have said above,G0 may be
thought of as the exact sum of the part of the series~8!
corresponding to diagrams of spherical topology. It is se
from Eq. ~10! that this series is convergent only outside t
circle on the complexE plane with a radiusuEu52V. The
values ofG0 inside the circle (uEu,2V) may be found via
an analytic continuation. This feature of the series has
important physical consequences. First, if one is approac
the singular pointsE562V starting from largeE, the more
and more complicated diagrams became important, thus
proaching some kind of continuum limit. This may not be
obvious from Eq.~10! because forG0 the series converge
even atE[62V, but as we will see below, the;1/b cor-
rections toG are more singular and the summation
(V/E)n is saturated by the terms with very largen.

FIG. 1. ~a! A plaquette and~b! a sphere glued from such
plaquette.
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Even more troublesome is the calculation of correlat
functions. In this case one has to consider the Green’s fu
tions close to the borders of the cut (E5E06 i0,uEu,2V)
and very far from the domain of convergence of the ser
~8!. The price for such an unreliable procedure will be t
severe cancellations of different contributions to the;1/b
corrections to the correlation function~see Sec. V!.

As we have taken into account exactly in Eq.~10! all
spherical contributions, the;1/b corrections naturally turn
out to be determined by the diagrams of the more com
cated topology. As we have seen before@Eqs.~9! and ~10!#,
the sum over spherical graphs for fullN3N matrices and for
band matrices coincides up to the trivial replacementN→b
because the summation over each matrix index in the
diagram of the kind of Fig. 1~b! is independent and result
exactly in the trivial factorV2. This direct correspondenc
does not hold for diagrams of more complicated topolo
However, each sum over the matrix index contains eff
tively ;b items and their magnitude corresponds to that
N3N matrices up to the substitutionb→N. Thus all the
business with the classification of the diagrams in the pow
of the parameter 1/b(1/N), which was so productive for the
full matrices, still holds for the band matrices as well.
particular for the Hermitian band matrices@Q50 in Eq.~1!#,
one may use the well-known Euler theorem to show that
corrections to Eq.~10! may be only of the kind;(1/b2)n,
with n being the number of handles.

Up to now we have associated each Feynman diag
with some surface. However, as it may be seen, e.g., f
Fig. 1, because in our problem we have in fact one la
plaquette~or two for the correlation functions!, it is natural
to consider only the border of this plaquette, which should
glued to some kind of branched polymer. It is seen from F
1~b! that the spherical surfaces are associated with the t
type polymers. On the other hand, the;1/b corrections to
G will be associated with self-intersections~the closed
loops! of the polymer. It seems very attractive to divide th
calculation of the;1/b corrections into two stages. The firs
stage consists in the summation over the trees and at
second stage one will take into account only the dres
self-intersected diagrams. To this end it turns out to be us
to consider instead of the Green’s function the logarithm

L~E!5
1

N
trlnS 12

H

E D , G~E!5
1

E
1
dL

dE
. ~11!

The simple combinatorial calculation allows one to repla
the perturbative series forL(E) by the sum over skeleton
graphs, as demonstrated in Fig. 2,

L~E!52
1

N (
n51

1

n
tr SHE D n52

1

N (
no contractions

1

p
tr~G0H !p.

~12!

Here the contractions between the nearest neighbors in
last sum are forbidden because they have been taken
account exactly inG0. More precisely, for the real symme
ric matrices @Q51 in Eq. ~1!# the contractions betwee
neighbors still are allowed, but only due to the second te
(;Q) on the right-hand side of Eq.~1!.
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III. THE EDGE OF THE SPECTRUM

Now we are able to consider the edge behavior of t
;1/b corrections to the Green’s functionG0 @Eq. ~10!#. To
this end in particular we have to take into account the lo
chains of glued dressed links of the kind of Eq.~12! ~or Fig.
2!. Consider the simplest two-link chain, which is shown
Fig. 3:

Cn~ i n2 i 0!5 (
i1 ,i2 , . . . ,i n21

~Hi0i1
Hi1i0

!

3~Hi1i2
Hi2i1

!•••~Hin21i n
Hini n21

!

5V2n
1

bA2pn
expH 2

1

2nb2
~ i 02 i n!

2J .
~13!

Here in order to calculateCn we have used the specific form
of the functionF( i2 j ) @Eq. ~3!#. The various methods may
be used in order to prove Eq.~13!. For example, one may use
the mathematical induction method. While deriving Eq.~13!
we have replaced all the summations over the intermedi
indices i 1 ,i 2 , . . . ,i n21 by integrations. The accuracy o
such a proceduredC;e2b for any smooth function
F( i2 j ) still allows one to consider the;(1/b)n corrections
for anyn,b. Cn evidently satisfies the sum rule

(
i n

Cn~ i n2 i 0![V2n, ~14!

which also may be used in order to find the normalization
Eq. ~13!.

FIG. 2. Reduction ofln(12E/H) to the skeleton diagram.

FIG. 3. Double-line chain calculated in Eq.~13!.
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The sum rule~14! holds exactly for any choice of the
functionF(u i2 j u), while Eq.~13! is model dependent. How
ever, as it will be shown now, for largen, Eq. ~13! is also
universal. Consider the recursion formula for largen ~and
arbitraryF),

Cn11~ i !5(
j
F~ u i2 j u!Cn~ j !

5V2Cn~ i !1
V2b2

2

d2

di2
Cn~ i !1•••. ~15!

This equation is the discrete~in time! analog of the heat
conductivity equation. Together with the initial condition

C0~ i !;d~ i ! ~16!

and the sum rule~14!, Eq. ~15! allows one to reproduce th
formula ~13! for the chain. In fact, this is the reason fo
considering the functionF(u i2 j u) of the form ~3! as the
most universal one. Moreover, even if one starts with so
irregular functionF ~which may seem to be crucial becau
only for smoothF(x) may the summation be replaced b
integration with an accuracy of;e2b#, taking into account
long chains (n@1) effectively smooths it out.

Up to now we have considered only the band matric
However, formula~13! may be easily generalized for th
random-bond lattice case~4!,

Cn~ iW !5
V2n

b~2pn!d/2
expH 2

1

2nb2/d
iW2J . ~17!

At this point we have completed all the preliminary fo
malities and are able to calculate the;1/b correction to the
Green’s function. Let us consider the ensemble of real sy
metric matrices~GOE! for which the correction of first orde
;1/b exists. The corresponding skeleton Feynman grap
shown in Fig. 4. It is seen from the figure that the colline
links should be glued in (1/b)1 order and thus this diagram i
forbidden for the Hermitian~GUE! matrices. In terms of sur-
faces, Fig. 4 corresponds to the Mo¨bius band. Combining
together Eqs.~11!–~13!, one finds the correction

FIG. 4. Möbius band corresponding to the;1/b correction to
the Green’s function for real symmetric matrices.
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L15
1

N
d lnS 12

H

E D52
1

N (
p51

`
1

2p
G0
2ptrHskeleton

2p

52
1

b (
p51

`
1

2p
~G0V!2p

1

~2pp!d/2
~18!

or, for the Green’s function

G15dG52
1

b~2p!d/2
G08

G0
(
p51

`
~G0V!2p

pd/2
. ~19!

We give the result at once for arbitrary dimensional
0<d,`. For band matrices one has to choosed51.

The only important factor that is responsible for the d
ference between usualN3N matrices (d50), band matri-
ces, and random hopping Hamiltonians in Eq.~19! is the
1/pd/2 in the sum. Technically, this factor comes from t
double chain of matrix elements~13! and ~17!. One may
consider the length of the Mo¨bius band~Fig. 4! p as the
discrete time in the diffusion equation~15!. Then 1/pd/2 will
simply correspond to the time dependence of the return p
ability for the classical diffusive particle at timep for differ-
ent dimensions.

We are mostly interested in the singularities ofG at
G0V→1 @or E→62V; see Eq.~10!#. It is seen from Eq.
~18! that L1 has a finite limit atG0V51 for anyd.0. On
the other hand,G1 @Eq. ~19!# is convergent and the diagram
of Fig. 4 approaches the continuum limit, at least ford51
andd52 ~for d.2 theG1 is also singular, but mostly due t
G08 without any continuum limit!.

For the random band matrix case (d51) it is easy to find
from Eqs.~19! and ~10! that close to a singular point

G~E→2V!5
1

V
2
1

V
AE22V

V
1
1

b

1

4V S V

E22VD 3/4
1

1

b2
const

V S V

E22VD 21•••. ~20!

Here the last term is the order of magnitude estimate of
;1/b2 contribution. The Feynman diagrams correspond
to this contribution are shown in Fig. 5~the explicit calcula-
tion of one of them will be presented below!.

FIG. 5. Three possible second-order;1/b2 diagrams for en-
semble of real symmetric~GOE! matrices:~a! dumb-bell-shaped
diagram and~b! and ~c! torus.
b-

e
g

The simple counting of the power of convergence for t
higher-order diagrams shows that close to singularity
Green’s function should be described by some scaling fu
tion

G5
1

V
1
1

V

1

b2/5
FS b4/5SE22V

V D D . ~21!

So one may conclude that the singularity at the ed
E562V of the perturbative Green’s function~10! should be
smoothed out at distancesDE;Vb24/5 from the singular
points. For example, it is easy to estimate the number
energy levels falling into this region. The same estimate e
dently holds for the number of the levels outside the cir
uEu.2V,

DN;NDE3/2;
N

b6/5
. ~22!

This estimate is of particular interest because the densit
eigenvalues outside the circle is purely nonperturbative
could not be found in any finite order over 1/b. It is to be
noted that for usualN3N matrices~both GOE and GUE!
DE;N22/3 andDN;1.

As stated in the Introduction, random band matrix may
considered as a Hamiltonian for a particle on a 1D latt
with random hopping. Eigenvectors for such a Hamiltoni
should naturally have some finite localization length. Th
localization length for the band matrix ensembles~1! was
found in the papers of Fyodorov and Mirlin@2# within the
super-symmetry method~the calculation ofl loc in our ap-
proach will be given in Sec. V!:

l loc;b2S 12
E2

4V2D , uEu,2V. ~23!

This result, in fact, was found only in the leading order
1/b and should change at the edge of the spectrum. One
combine our result~21! with Eq. ~23! in order to estimate the
localization length for nonperturbative states outside of
main band~circle!

l loc
np;b2DE;b6/5. ~24!

In particularl loc
npDN;N, which may mean that nonperturba

tive states spatially do not overlap.
In a recent paper@17# the distribution of Lyapunov expo

nents for random band matrices was studied numericall
the very edge of the perturbative part of the spectr
uEu52V. The authors of Ref.@17# have considered the ban
matrices with a step form of the bandF(u i2 j u.b)[0 for
which there exist exactly 2b11 Lyapunov exponents. Thei
result reads

l i;b24/3i 1/3. ~25!

Here i51,2,3, . . . andl1 is the smallest decrement of th
Lyapunov exponent. The corresponding solution grows l
cn
( i );exp(nli). Naively, one may expect that the smalle

Lyapunov exponent directly gives the localization length

l1
21' l loc . ~26!
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However, this simple guess puts the two results~24! and~25!
in conflict. On the other hand, the numerical accuracy of@17#
allows one to be sure in Eq.~25! for sufficiently large i ,
namely, 1! i!b. The accurate result for the smalle
Lyapunov exponent still may differ from Eq.~25!.

Moreover, the direct correspondence between the lo
ization length and the first Lyapunov exponent natura
takes place in the central part of the spectrumuEu,2V, but
at the edgeuEu52V formula ~26! is not necessarily correct
It seems rather probable that the eigenstates outside the c
uEu>2V appear due to some very rare fluctuations of o
random banded HamiltonianHi j . Furthermore, we have n
idea even how to estimate the density of such rare fluc
tions. If the number of these fluctuations is small compa
toN/b6/5 the eigenstates withuEu.2V will not be distributed
homogeneously, but will be concentrated in rather rare
dense bunches. On the other hand, the first Lyapunov e
nentl1 evidently comes from the whole range of variation
vector index. Thus the localization length atuEu52V should
not necessarily be of the same order of magnitude as the
Lyapunov exponent. Unfortunately, if the states w
uEu.2V are concentrated together, one should most n
rally expect thatl1

21@ l loc
np . Thus the discrepancy betwee

Eqs.~24! and ~25! turns out to be severe even in this cas
In fact, in Eqs.~20! and~21! the estimate for higher-orde

corrections was declared without any proof. However, b
for the more rigorous proof of Eq.~21! and for future calcu-
lations it is useful to calculate explicitly at least one no
trivial ~beyond the one loop! diagram. Therefore, we would
like to find now the leading;1/b2 correction for the GUE
band matrices. In this case the only diagram of Fig. 5~c! that
survives corresponds to a torus in the surface language.
ure 6 shows how one must glue the dressed hexagon@see Eq.
~12!# in order to build this diagram. Indicesk1 ,k2 ,k3 on the
figure are the lengths of the double-link chains~13!, while
i and j stand for the matrix indices corresponding to the en
of these segments. It is to be noted that both indicesi and
j appear three times in the diagram, which in particular le
to a loss of two powers of largeb for this diagram compared
to the tree one@Fig. 1~b!#. More precisely, as may be see
also from Fig. 1~b! it is not the multiple indices but the
closed loops that are the direct source of the 1/b. One of the
simplest ways to find the order of the diagram in t
(1/b)n classification is to look for the number of links th

FIG. 6. Gluing of dressed hexagon for the;1/b2 correction for
Hermitian matrices~torus!.
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need to break in order to get the treelike simply connec
diagram. Now one may combine Eqs.~12! and~13! in order
to find the contribution of Fig. 5~c!:

L2
H52

1

N (
k1 ,k2 ,k3.0

1

2~k11k21k3!
~k11k21k3!

3
1

3
~G0!

2k112k212k3(
i , j

Ck1
~ i2 j !

3Ck2
~ i2 j !Ck3

~ i2 j !. ~27!

Here (k11k21k3)
21 comes from 1/p in Eq. ~12! and the

combinatorial factor (k11k21k3)
11 takes into account the

number of positions available, say, for the left endi of the
upper segmentk1 on Fig. 6 and the right endj of the same
lower segment~these points are shown by the two sm
circles on the figure!. Because these two circlesi and j are
equivalent the combinatorial factor is only(ki , not 2(ki .
Finally, after one has taken into account by this(ki the
freedom in definition of the starting point on the circle, th
sets (k1 ,k2 ,k3), (k2 ,k3 ,k1), and (k3 ,k1 ,k2) became indis-
tinguishable, which is taken into account by the factor 1/3
Eq. ~27!. The simple substitution of Eq.~13! into Eq. ~27!
leads to

L2
H52

1

6b2 (
k1 ,k2 ,k3.0

~G0V!2k112k212k3

2pAk1k2k3
(
i

1

bA2p

3expH 2
1

2b2 S 1k1 1
1

k2
1

1

k3
D ~ i2 j !2J

52
1

12pb2 (
k1 ,k2 ,k3.0

~G0V!2k112k212k3

Ak1k21k1k31k2k3
. ~28!

Thus the Green’s function close to the edge of spectr
for the GUE band matrices reads

GH5
1

V
2
1

V
AE22V

V
1

1

b2
I

V S V

E22VD 21•••

5
1

V
1
1

V

1

b2/5
F̃S b4/5SE22V

V D D , ~29!

where

I5E
x,y,z.0

d~12x2y2z!

48p

dxdydz

Axy1xz1yz
. ~30!

In order to be sure that we have done nothing wrong with
combinatorics one may easily repeats the calculation~27!–
~29! for usualN3N matrices. Some new~unknown! scaling
function F̃ appeared in Eq.~29!. We have used the sam
argument forF̃ as forF @Eq. ~21!#, but the asymptotic serie
for F(x) is in powers ofx25/4 , while for F̃(x) it is in
powers ofx25/2 .

IV. THE EDGE OF THE SPECTRUM FOR LATTICES

Even more puzzling turns out to be the edge of the sp
trum behavior for the lattice ensembles~4!. On the one hand
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the naive power counting for diagrams such as the diag
of Fig. 5~c!, which we have calculated in Eq.~29!, gives

G5
1

V
1
1

V

1

b2/~62d! CS b4/~62d!SE22V

V D D . ~31!

On the other hand, it is easy to find the first order (;1/b)
correction to the Green’s function at the edge from Eq.~19!,

G155
1

8pbV
A V

E22V
lnS V

E22VD , d52

1

2bV
A V

E22V(
p51

`
1

~2pp!d/2
, d.2.

~32!

It is seen immediately that at least ford.2 Eqs.~32! and
~31! disagree. In fact, the solution to this paradox was fou
a few years ago in a paper by Ambjo”rn et al. @15# where the
toy model for string ind dimensions was considered. Th
authors of Ref.@15# have restricted the class of triangulatio
for string embedded ind dimensions to those having a min
mal cross section. While doing so they obtained effectiv
the theory of ad-dimensional branched polymer. As we ha
mentioned above, the summation over dual Feynman
grams for our band matrices lattices also reduces to the s
mation over some branched polymers. In the lattice case
dices assigned to the ends of each link expand o
d-dimensional~although discretized! Euclidean space, while
the factorF( iW2 jW) @Eq. ~4!# regulates the spatial size of th
link just like in the model of@15#. The branched polymer
were also considered many times within the random vec
matrix model approach~see, e.g.,@18#!. However, only the
critical exponents for our model of branched polymers~or,
more precisely, ‘‘branched tapes,’’ as seen in Figs. 4, 5,
7! should coincide with those for another model. The scal
function itself may be different.

In order to solve the contradiction between Eqs.~31! and
~32! it is enough to observe that ford>2 some of the dia-
grams for the branched polymer are much more singular t
others with the same topology. These are the so-called
pole diagrams shown in Fig. 7. Moreover, each of the d
grams of Fig. 7 behaves effectively like some tree diagr
@see Fig. 1~b!# up to some trivial factor associated with th
ends of the tree. Therefore, while the true complicated d
grams@say of Figs. 5~b! and 5~c!# become less and less sin
gular in higher dimensions in accordance with Eq.~31!, the
tadpole diagrams ford.2 all have the same singularity. O

FIG. 7. Tadpoles or new trees for lattice models.
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the other hand, one may try to sum up exactly this subse
of rather simple diagrams, as done in@15#.

The procedure of calculating the tadpole contribution
illustrated in Fig. 8. Let us replace eachn-tadpole diagram
by some correlation function of our Green’s function a
(trH)n calculated in the spherical approximation. The e
plicit formula corresponding to such a procedure is

Gtadpole5
1

N(
n

S tr 1

E2H

~ktrH !n

n! D
c

, ~33!

where the subscriptc stands for connected diagrams. Th
coefficientk may be found, for example, from Eq.~32!. The
factor 1/n! in Eq. ~33! accounts for the permutations of var
ous trH. Due to this 1/n! the sum overn results in the trivial
exponentiation ofktrH. In order to findGtadpoleit is useful to
write explicitly the integration overH,

Gtadpole5
1

ZE DH
1

N
tr

1

E2H

3expH 2(
i , j

Hi jH jiM ~ i2 j !1ktrHJ . ~34!

HereM ( i2 j );F( i2 j )21 andZ is the same integral with-
out (1/N)tr@1/(E2H)#, but with ktrH included in the argu-
ment of the exponent. By such a choice ofZ one gets rid of
disconnected diagrams.

At least in the leading~spherical! approximation formulas
~33! and~34! give the same Green’s function at the edge.
the other hand, the Green’s function~34! reduces to the
zeroth-order one~10! by the trivial substitution

Hi j→Hi j1constd i j , ~35!

E→E1const.

After a comparison with Eq.~32!, one finds

G55
1

V
2
1

V
AE22V

V
2

1

4pb
lnS V

E22VD , d52

1

V
2
1

V
AE22V

V
2
1

b
T(
p51

`
1

~2pp!d/2
, d.2.

~36!

For d.2 this result is almost trivial. Taking into account th
most singular series of corrections result in a simple shift
the edge of the cut. Ford52, taking into account the tad
poles results not only in the shift of the edge b
DE; ln(b)/b, but also in some nontrivial change of th

FIG. 8. Reduction of tadpole diagram to the corresponding c
relation function.



g
ay

a
a

be
th
ry
c
fe

ar
co
rie

e
pe

-
m

E
su

re

a
ey
o
th
-

ie
e
r
s

ave
ion
it
m

’s

sed
-
t
ins

-
he

nd
ll

in
is
er

ed

6426 55P. G. SILVESTROV
Green’s function. The singularity in Eq.~36! for d52 will
be smoothed out atuE22V2(V/2b)ln(b)u;V/b by some un-
known scaling function.

For GUE matrices~lattices! the simple tadpoles consistin
of a small Möbius band are forbidden. However, one m
arrange the slightly more complicated;1/b2 tadpole shown
in Fig. 9 which is allowed also for oriented surfaces. As
result for the GUE lattices with random bonds the critic
dimension isd54 instead ofd52.

V. CORRELATION FUNCTION

Physically, the most interesting quantity that would
calculated with the random matrix ensembles may be
two-point correlation function of the density of states at ve
close energies. It is generally believed that just such lo
quantities most adequately reproduce the measurable
tures of complicated quantum systems.

Unfortunately, the perturbative procedure, which we
able to perform, has a serious drawback in the case of
relation functions. As stated in Sec. II, the perturbative se
in 1/E are convergent only outside the circleuEu.2V, while
the series in 1/b turns out to be the asymptotic series. B
sides the perturbation theory there may exist some non
turbative contributions, say, of the form;exp@2b(E
22V)g], with someg;1. However, after an analytic con
tinuation to the border of the cut, which goes fro
E522V to E52V, these corrections may be~and are at
least for the usualN3N matrix ensembles! converted into
some oscillating functions such as;sin(b2DE). Certainly, in
our perturbative result all these oscillating terms~if there are
any! will be smoothed out. For example, for the usual GU
ensemble one gets instead of the exact re
K(DE)5sin2(NDE)/DE2 only K50.5/DE2. Due to this prin-
cipal limitation the quantities that we would calculate a
called the smoothed correlators.

The intriguing feature of our diagrammatic series that w
considered in the previous sections is that the dressed F
man diagrams at the edge of the spectrum approach s
kind of continuum limit. Technically, it happens because
value of@VG0(E)#

2 @Eq. ~10!#, which was our actual expan
sion parameter, became equal to@VG0(2V)#

251 at the bor-
der. Now, because we are going to work with the energ
inside the banduE1,2u,2V there seems to be no room for th
continuum limit. However, letE1 approach the upper borde
andE2 approach the lower border of the cut. Then it follow
immediately from Eq.~10! that

FIG. 9. The;1/b2 tadpole for Hermitian~GUE! matrices.
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VG0~E1!5eif2l/2, ~37!

VG0~E2!5e2 if2l/2,

where smalll is given by

l5
E12E2

iA4V22E2
, Rel.0. ~38!

Thus again at least those subseries of diagrams that will h
as the expansion parameter the combinat
V2G0(E1)G0(E2)5e2l may approach the continuum lim
~another less direct example of the ‘‘effective’’ continuu
limit will be considered in Sec. IV A!.

In order to find the correlation function of two Green
functions it is natural again to consider the logarithms

TrlnS 12
H

E1
DTrlnS 12

H

E2
D
c

[ (
p,p8

1

p8
Tr$~G0~E1!H !p8%skelet

1

p
Tr$~G0~E2!H !p%skelet

52
N

b~2p!d/2(p
p

p2
1

pd/2
@V2G0~E1!G0~E2!#

p. ~39!

Here we have expanded each logarithm in the sum of clo
skeleton chains like in Eq.~12!. Also here and below sub
script c means ‘‘connected.’’ A factor 2 in front of the las
sum accounts for two allowed directions of glued cha
~cooperon and diffuson in solid-state physics!. Finally, one
combinatorial factorp in the last sum accounts for the num
ber of different ways to contract two skeleton rings of t
lengthp. We see that just thee2l @Eq. ~38!# turns out to be
the expansion parameter in Eq.~39!.

By simple differentiation of Eq.~39! one finds the corre-
lation function at very close energiesE12E2→0,

Tr
1

E12H
Tr

1

E22Hc5
2N

b~4V22E2! (p51

`
p12d/2

~2p!d/2
e2lp

;5 S i

E12E2
D 22d/2

, d,4

lnS iV

E12E2
D , d54.

~40!

This equation reproduces the known result of Al’tshuler a
Shklovskii @19# for the correlation of energy levels in sma
disordered metallic samples.

The factor 1/pd/2 in Eqs.~39! and ~40! appears after glu-
ing two Hp into a closed two-link chain~13! and ~17!. As
stated after Eq.~19!, this factor 1/pd/2 works effectively as
the probability for a diffusive particle to return to the orig
after timep. In principle, one may go even further in th
analogy with classical diffusion. By making the Fouri
transform of the functionCn( iW2 jW) @Eqs.~13! and~17!# Eq.
~40! may be written in the form of the integral of the squar
Green’s function of the diffusion equation~again in agree-
ment with corresponding formulas from@19#!.
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Now let us consider in more detail the correlation fun
tion for band matrices (d51). We would like to show how
the information contained in the smoothed correlation fu
tion ~40! combined with the simple hypothesis of the unive
sality of spectral correlations allows one to find the corr
estimate of the localization length for eigenvectors of ra
dom band matrices. Consider instead of the Green’s func
G the density of eigenvaluesr(E), which is simply the
imaginary part ofG @Eq. ~5!#. It is generally recognized tha
the fluctuations ofr(E) for all ensembles of full random
N3N matrices are universal. This means that, being pr
erly normalized, the density of states–density of states
relation function has the form

r~E1!r~E2!c

r~E1! r~E2!
5KS dndE ~E12E2! D . ~41!

Here the functionK(x);1 at x;1 anddn/dE is the aver-
aged density of eigenstates. Of course, bothE1 andE2 in Eq.
~41! are real~have reached the border of the cut!. The de-
tailed form ofK(x) is specific for the ensemble under co
sideration~e.g., the GUE or GOE!, but for a given ensemble
K is the universal function of the energy interv
DE5E12E2 measured in units of the mean interlevel spa
ing dE/dN .

For the random band matrices one may expect the s
universal behavior of the correlation of density of state flu
tuations as Eq.~41! only if all eigenvectors are delocalized
On the other hand, it is easy to write down the natural
tension of the formula~41! for systems with finite localiza-
tion lengthl :

~E1!r~E2!c

r~E1! r~E2!
5
l

N
KS lN dn

dE
~E12E2! D . ~42!

By writing this formula we suppose that the fluctuations
the density of energy levels for random band matrices
are universal if the energy differenceDE5E12E2 is mea-
sured in the units of effective mean interlevel spacing

DEeff;
N

l

dE

dn
. ~43!

Roughly speaking,DEeff is the mean interlevel spacing for
band matrix of a finite sizeN; l @of course, in Eqs.~41! and
~42! we suppose that at leastl@b#. Moreover, if the modi-
fied universality takes place andl@b, formulas~42! and~43!
will also account for the energy dependence of the local
tion length. Of course, the two universal functionsK(x) in
Eqs.~41! and ~42! are completely different.

Our line of reasoning, in fact, follows the consideration
@16# ~see also@20#! for the density-density correlator in dis
ordered metal. Now we would simply like to convert th
arguments of the authors of Ref.@16# in order to estimate the
localization length. The averaged density of states for la
b may be easily found from Eq.~10!,

r~E!5
dN

dE
5
1

p
ImtrG~E2 i0!5

N

2pV2A4V22E2.

~44!
-
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Now, from Eq.~40! one finds the asymptotics

r~E1!r~E2!c

r~E1! r~E2!
5

21

Nb

V4

~4V22E2!5/4
1

uE12E2u3/2
. ~45!

Together with Eqs.~41! and ~42!, this correlation function
allows one to find

l5b2S 12
E2

4V2D , ~46!

in accordance with the result of Fyodorov and Mirlin@2#. We
have defined here the localization length~or the effective
localization length! by choosing the overall normalizatio
constant in Eq. ~46! to be equal to one. Formally
universality-based arguments allows one to findl only up to
some normalization constant;1 , which, on the other hand
depends on the explicit definition one uses for the locali
tion length. For example,l defined via the inverse participa
tion ratio@2# or by the first Lyapunov exponent may differ b
some trivial factor. Anyway, our estimatel (E) seems to be
much less complicated than those of the supersymmetric
proach of@2#.

A. Corrections to the correlator

In this subsection we would like to consider the;1/b
corrections to the correlation function. As it was explain
above, we are able to calculate only the smoothed correla
functions. More concretely, we are able to consider
Green’s functions not too close to the border of the
uImEu@DEeff;V/b2 @Eqs.~43! and ~46!#. Nevertheless, the
uncertainty in the correlation function due to smoothening
fast oscillations decreases exponentially li
;exp(2ImE/DEeff). Therefore, even for a smoothed corr
lation function one is able to consider the corrections of a
finite order in 1/b.

The skeleton diagrams for the;1/b correction to the cor-
relation function~40! and~45! are shown in Fig. 10. At first
one may easily estimate the power of singularity for ea
diagram at smallDE. These singularities are associated w
the number of summations over the length of tape glu

FIG. 10. The;1/b corrections to the correlation function:~a!
singular corrections like 1/DE3 for d51 and ~b! singular correc-
tions like 1/DE5/2 for d51.
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from the segments originating from two different logarithm
@Eq. ~39!# ln(12H/E1) and ln(12H/E2). Thus, compared to
the zeroth-order result~40! and ~45! the diagrams of Fig.
10~a! are of the relative amplitude;b21DE221d/2, while
the diagrams of Fig. 10~b! are of the relative amplitude
;b21DE21 .

On the other hand, the hypothesis of universality~42! that
allows us to find so successfully the localization length~46!
leads to a strong restriction on the possible form of corr
tions to the correlation function. As we have considered
Sec. II, the spherical result for the correlation function~45! is
the exact result in the large-b limit. Therefore, the correc-
tions to Eq.~45! should be of the relative order;1/b. Due to
the universality~42!, b may in turn appear in the result onl
in the combination (E12E2)/DEeff;(E12E2) l
;(E12E2)b

2 @see Eqs.~42!, ~43!, and~46!#. Thus the only
form of the correlation function consistent with the unive
sality condition~42! is

Tr
1

E12H
Tr

1

E22Hc;
N

b~E12E2!
3/2

3S 11
const

bAE12E2

1••• D . ~47!

However, this expression evidently contradicts the sim
estimate of any of the diagrams of Fig. 10.

Thus we have to choose between the two scenarios. F
as seen from the naive estimates, the;1/b corrections to the
correlation function may be much more singular than it
expected from the universality~47!. In this case the;1/b
contributions blow up atDE much larger than the effectiv
energy level spacingDEeff @Eq. ~43!#, which will be the in-
dication of some other physics at the intermediate ener
DEeff!DE!V.

In the second scenario the universality~42! and~47! takes
place and all the additional singularities cancel each othe
the sum of different diagrams.

In fact, the aim of this section is to demonstrate explici
that at least the;1/b corrections to the correlation functio
do not violate the universality~42! and ~47! and all the ad-
ditional singularities vanish after a huge cancellation
tween the diagrams of Fig. 10.

The analogous cancellation between the high-order
rections to the correlation functions has been previously
served for usualN3N random matrices by Verbaarsch
et al. @7,8#.

Consider first the most singular diagrams of Fig. 10~a!.
The calculation of the corresponding contribution to the c
relation function of two logarithms~39! has much in com-
mon with the calculation of the;1/b2 correction to the
Green’s function at the edge~27!–~29!. The main difference
is that now two of the double-link chains are accompan
by the factor@V2G0(E1)G0(E2)#

p5e2lp , while the third
chain is associated with the oscillating contributi
@V2G0

2(E1,2)#
k5exp(62ikf2kl). It is convenient to bring

together into one expression both diagrams of Fig. 10~a!,
s

c-
in

-

le

rst,

s

ies

in

y

-

r-
b-
t

r-

d

d~LL !a5
2N

b2
1

2
T (
p1 ,p2.0

(
2`,k,`

e2ifk2l~p11p21uku!

~2p!d~p1p2uku!d/2

3S 1p1 1
1

p2
1

1

uku D
2d/2

5
N

b2(
e2ifk2l~p11p21uku!

~2p!d@p1p21uku~p11p2!#
d/2 . ~48!

Naively, the summation overp1 and p2 here gives the sin-
gularity;l221d ~and the additional factorl22 will appear
after differentiation with respect toE1 andE2, which should
be done in order to get the correlation function of tw
Green’s functions!. However, at least this leading singularit
should disappear after the summation overk. For example,
for d50 one has(ke

2ifk2luku;l @an even more trivial ex-
ample of the same kind is((21)k50#. FordÞ0 some can-
cellation also should take place at least for largep1,2, which,
on the other hand, are responsible for the ‘‘naive’’ singula
ity of Eq. ~48!. Thus again one may see that largek or long
chains on the diagram~continuum limit! turn out to be im-
portant.

In order to treat this cancellation explicitly it is conve
nient to divide the contribution of Fig. 10~a! into two parts

d~ L̄L !a5A1B,

A5
N

b2~2p!d (
p1 ,p2.0

(
2`,k,`

e2ifk2l~p11p21uku!

3H 1

~p1p21uku~p11p2!!d/2
2

1

p1
d/2~p21uku!d/2

2
1

p2
d/2~p11uku!d/2 J , ~49!

B5
2N

b2~2p!d F (p.0

e2lp

pd/2 G (
p8.0

(
2`,k,`

e2ifk2l~p81uku!

~p81uku!d/2
.

Here, in theA part the contribution with largep1 andp2 will
be suppressed due to the summation overk, while the con-
tribution with say,p1!p2 will be suppressed due to simpl
cancellation of the two terms in the curly brackets in E
~49!. In the B part summations overp are factorized and
only the summation overp8 suffers from the cancellation
due to oscillations.

In a similar way one may write down the contribution o
naively less singular diagrams of Fig. 10~b!,

d~LL !b5
2N

b2~2p!d F (p.0

e2lp

pd/2 G
3H (

k>0
e~2if2l!k(

q.0

e~2if2l!q

qd/2
1~f→2f!J

5
2N

b2~2p!d F (p.0

e2lp

pd/2 G
3H (

2`,k,`
(

2uku,p8<0

e2ifk2luku

~p81uku!d/2 J . ~50!
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The situation is further simplified if one combines this co
tribution with the most singular partB @Eq. ~49!# of the dia-
grams in Fig. 10~a!. After a simple change of variable
p8→q5p81uku one gets

d~LL !b1B5
2N

b2~2p!d F (p.0

e2lp

pd/2 G (
2`,k,`

(
q.0

e2ifk2luku

3
1

qd/2
exp$2l~q2uku!u~q2uku!%. ~51!

Hereu(x)50 for x,0 andu(x)51 for x.0. Now the sum
over k may be found exactly,

d~LL !b1B5
2N

b2~2p!d F (p.0

e2lp

pd/2 Gl (
q.0

cos~2qf!e2lq

qd/22sin2f
.

~52!

We see that this contribution as a function ofl turns out to
be as singular as the leading-order result~39! and~40!, but is
suppressed like 1/b and therefore should be neglected.

Thus let us consider the only surviving contributionA
from Eq.~49!. For simplicity consider the band matrices on
(d51). After differentiation with respect toE1 andE2 one
gets

d~TrG1TrG2!5
N

b22p~4V22E2!( e2ifk2l~p11p21uku!

3~p11p21uku!2H 1

Ap1p21uku~p11p2!

2
1

Ap1~p21uku!
2

1

Ap2~p11uku! J . ~53!

As we will see bothp1 and p2 in this sum effectively turn
out to be large. Therefore, in order not to get an expon
tially small result one has to consider the contributions in
sum that are singular ink. These singularities naturally ap
pear due touku in Eq. ~53!. The following simple identity
shows how one may utilize this;uku behavior:

( ukue2ifk2luku5( ukue2ifk2luku f ~k!5
21

2sin2f
,

~54!

where f (k) is any smooth and slow function ofk and
f (0)51. Taking into account that 2Vsinf5A4V22E2, one
finds from ~53! and ~54!

d~TrG1TrG2!5
4NV2

b2~4V22E2!2 (
p1 ,p2

p11p2

2pAp1p2
e2~p11p2!l

5
2N

b2
2V2

4V22E2

1

DE2 . ~55!

Finally, the smoothed density-density correlation functi
for band matrices takes the form
-

-
e

K~E12E2!5
N

l

r~E1!r~E2!c

r~E1! r~E2!

5
21

2 S DEeff

uE12E2u
D 3/2

3H 112S DEeff

uE12E2u
D 1/21•••J , ~56!

whereDEeff5N@2p lr(E)#21 and l5b2(12E2/4V2) in ac-
cordance with Eqs.~42!, ~46!, and~47!. For convenience we
have added one factor (2p)21 into the definition ofDEeff
compared to Eq.~43!.

To conclude this section let us recall again that we c
sider only the smoothed correlation functions. If one wou
like to compare our Eq.~56! with the result of numerical
matrix diagonalization, the ‘‘experimental’’ result should b
averaged with some smooth weight function. For example
may be

Ksmooth~DE!5E Kexpt~DE1kx!e2x2
dx

Ap
, ~57!

whereDEeff!k!DE.

VI. SPATIALLY INHOMOGENEOUS EXAMPLES

The quantities that we have tried to calculate up to now
the density of states and density-density correlat
function—are generally considered for the usualN3N ran-
dom matrices. In this section we would like to consider t
two quantities that are specific for band matrices and ne
appear for the usualN3N ones.

The first example will be the correlation function of th
local density of statesr(E,i ) for different energies and dif-
ferent vector indices~1D lattice sites! i and j . The corre-
sponding dressed Feynman diagram is shown in Fig.
Again one should calculate first the log-log correlation fun
tion. After differentiation with respect toE1 andE2 and tak-
ing the imaginary part of the Green’s functions, the corre
tion function takes the form

FIG. 11. Spatially inhomogeneous correlation functi
r(E1 ,i )r(E2 , j ).
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r~E1 ,i !r~E2 , j !c5
1

p2b2
G0~E1!G0~E2!Re (

k1,2>0
(

n11n2.0

@G0~E1!V#2k1@G0~E2!V#2k2@G0~E1!G0~E2!V
2#n11n2

A~k11k2!~n11n2!1n1n2

3
1

2p
expH 2

1

2b2
~ i2 j !2

k11k21
n1n2
n11n2

J . ~58!
is
ly
-
su
s

,

e

si
tu

re

of
te-

l
y the

d

l

Here neithern1 nor n2 could be negative. This equation
further simplified if one takes into account that effective
k1,2!n1,2. Therefore, thek1,2 may be neglected in the expo
nent and in the square root in the denominator and the
over k1 and k2 reduces to the simple geometrical progre
sion. Finally, the summations overn1 andn2 factorize and
the correlation function takes rather simple form

r~E1 ,i !r~E2 , j !c5
1

p2b2~4V22E2!

3ReF(
n

e2ln

A2pn
expH 2

~ i2 j !2

2nb2 J G 2.
~59!

Herel is defined by Eq.~38!. One may easily investigate
for example, small and largei2 j limits of this expression. In
terms of universal variablesDEeff and l @Eq. ~56!#, the cor-
relation function~59! takes the form

r~E1 ,i !r~E2 , j !c

@r~E!/N#2
5

1

2p S i2 j

l D 2ReF E
0

`

expH 2
1

4i

E12E2

DEeff

3S i2 j

l D 2y22 1

2y2 J dyG2. ~60!

Here Im(E12E2).0 and the integral should be squared b
fore taking the real part. We have dividedr(E) by N in the
left-hand side of Eq.~60! in order to get rid of the physically
trivial N dependence on the right-hand side.

Finally, the integration overy in Eq. ~60! may be done
explicitly, which leads to

r~E1 ,i !r~E2 , j !c

@r~E!/N#2
5
1

2
ReF iDEeff

E12E2

3expH 2A2
E12E2

iDEeff

u i2 j u
l J G

52
1

2 S i2 j

l D 2sin~ t !e2t

t2
, ~61!

where t5u i2 j u/ lAuE12E2u/DEeff . In particular one may
easily examine that after the summation overi and j Eq. ~61!
leads to the usual correlation function~45!.

Other interesting objects that may be considered ea
within our technique are the finite-size band matrices. Na
rally, the most interesting case isb!N<b2. Below we de-
scribe analytically the crossover from the band matrix
m
-

-

ly
-

-

gime ~40! to the Wigner-Dyson regime in the asymptotics
the smoothed density-density correlation function for fini
size band matrices.

Consider the periodicN3N band matrices. The statistica
properties of this Gaussian ensemble are again defined b
second moment~1!, but now the functionF takes the form

F~ i , j !5 (
n52`

1`

f ~ i2 j1nN!. ~62!

Here f (k)5 f (uku) vanishes fork.b just like F in Eq. ~1!.
The parametersV andb ~the strength of the interaction an
width of the band! are now defined as

V25(
j51

N

F~ i , j !5(
2`

1`

f ~ j !, b25
(n2f ~n!

V2 , ~63!

which is the natural generalization of Eq.~2!. The analog of
Eq. ~15! for the two-link chain has the form

Cn11~ i !5(
j51

N

F~ i , j !Cn~ j !5 (
j52`

1`

f ~ i2 j !Cn~ j !,

~64!

Cn~ j1N![Cn~ j !.

The solution of this equation for sufficiently largen ~and for
b!N) reads

Cn~ i !5
V2n

bA2pn
(
k
expH 2

~ i2kN!2

2nb2 J . ~65!

The leading-order spherical Green’s function~10! due to Eq.
~63! @see also the discussion before Eq.~10!# is not changed.
Therefore, the trivial modification of Eq.~40! gives

r~E1!r~E2!c5
N

p2b~4V22E2!

3Re(
p51

`

(
k52`

` A p

2p
e2lp

3expH 2
1

2p S kNb D 2J , ~66!

wherel again is defined by Eq.~38!. This expression may be
further simplified in two limiting cases. IfN is small,
namely,N!b/Al, one may replace the summation overk
by integration. In this case Eq.~66! reduces to the usua
Wigner-Dyson correlation function r(E1)r(E2)c
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;1/(E12E2)
2. If N@b/Al only k50 survives in the sec

ond sum and Eq.~66! coincides with the pure band matri
result ~45!.

Also it may be convenient to use the ‘‘physical’’ var
ables: the localization lengthl5b2(12E2/4V2) and effec-
tive interlevel spacingDEeff5N@2p lr(E)#21 @note that
DEeff does not depend onN becauser(E);N#, as in Eqs.
~56! and ~60!. Now one has instead of Eq.~66!

r~E1!r~E2!c

@r~E!#)2
5

1

A8p

l

N
ReE

0

`

(
k52`

`

x2dx

3expH 2
1

4i

E12E2

DEeff
x22S kNl D 2 1

2x2 J
52

l

2N S DEeff

uE12E2u
D 3/2

3S 12t
d

dt D sinh~t!1sin~t!

cosh~t!2cos~t!
, ~67!

wheret5(N/2l )AuE12E2u/DEeff . In particular fort!1 or
t@1 this equation corresponds to the usual Wigner-Dy
or band matrix~56! results.

VII. CONCLUSION

Random matrix models are usually expected to desc
some universal and very general features of complica
quantum systems. Therefore, on the one hand, one and
same very simple model may be associated with a variet
physical systems. On the other hand, this model will be g
erally able to explain only simplified versions of a real co
plicated problem, say, properties of only very small meta
grains. In this paper we have considered banded random
trices, which at least formally seem to be much closer to r
physical systems. For example, realistic Hamiltonians in
shell model for complicated atom@21# and atomic nuclei
@22# were shown to have a banded structure. Also, bein
good example of quasi-1D quantum systems, random b
matrices are expected to depict adequately properties of e
trons in thick wires@2,3,5# ~see also@23#, where the mapping
of the Hamiltonian for a disordered wire onto a rando
banded block-diagonal matrix was done explicitly!.

Technically, our work was stimulated in part by the su
cessful application of matrix models for the calculation
the partition function of 2D quantum gravity. Just like in 2
gravity, we have found a critical behavior at the edge
spectrum for band matrices~Sec. III! and for a lattice Hamil-
cs
n

e
d
the
of
-
-

a-
al
e

a
nd
c-

-
f

f

tonian with random hopping~Section IV!. Unfortunately, it
may not be so easy to find a physical system whose glo
spectral properties will be described by the random ba
matrices with their almost semicircular density of stat
Nevertheless, the interest in the investigation of the e
behavior and the tails of spectral density have been dem
strated in recent papers@24,17#.

In almost all applications of random matrix theory one
interested in local characteristics of the spectrum such
correlations of very close or even neighboring energy lev
In Sec. V we calculated the asymptotics of the two-po
correlation function of the density of states~40! and ~45!,
which is in agreement with the result of Ref.@19# for energy-
level correlations in disordered metals. Moreover, toget
with the hypothesis of the universality of spectral corre
tions @16#, our result~45! allowed us to estimate the loca
ization length~46! for random band matrices and this calc
lation seems to be much less complicated than those kn
from literature@2#.

On the other hand, we were able to calculate only
asymptotics~plus corrections! of the correlation function
which, in principle, should not necessarily manifest univ
sality. The universal behavior of Eq.~45! shows that there
are only two different energy scales in the model: the glo
width of the energy zoneDE54V and the effective inter-
level splittingDEeff ~43! and~56!. The hypothesis of univer-
sality finds further support in the calculation of the first co
rection to the two-point correlation function~56!. To the best
of my knowledge, it is the first calculation of subleadin
corrections for quasi-1D systems. However, the calculat
of the correction also shows a serious drawback of our p
turbative approach. The accurate result~55! and ~56! was
found only after the huge two-step cancellation. One m
speculate that this is the price to pay for working very
from the region of convergence of the initial series inH/E.
Nevertheless, these cancellations show that it will be
tremely difficult to reach the regionE12E2;DEeff in our
approach.

Finally, in Sec. VI we found the asymptotics of the loc
density of state two-point correlation function~60! as well as
the usual two-point correlator for a finite-size quasi-1D s
tem ~67!. These relatively simple analytical calculation
demonstrate again the usefulness of the diagrammatic
proach for the investigation of such nontrivial systems
random band matrices.
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